OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16561–16569

Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap

Tae Joon Seok, Arash Jamshidi, Michael Eggleston, and Ming C. Wu  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16561-16569 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4466 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology.

© 2013 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: May 7, 2013
Revised Manuscript: June 20, 2013
Manuscript Accepted: June 26, 2013
Published: July 2, 2013

Tae Joon Seok, Arash Jamshidi, Michael Eggleston, and Ming C. Wu, "Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap," Opt. Express 21, 16561-16569 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632 (2003). [CrossRef]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  3. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  4. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011). [CrossRef] [PubMed]
  5. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008). [CrossRef]
  6. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13(2), 392–396 (2013). [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  8. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012). [CrossRef]
  9. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat Commun3, 962 (2012). [CrossRef] [PubMed]
  10. K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012). [CrossRef] [PubMed]
  11. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8(2), 642–646 (2008). [CrossRef] [PubMed]
  12. T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small6(2), 270–275 (2010). [CrossRef] [PubMed]
  13. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009). [CrossRef]
  14. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006). [CrossRef] [PubMed]
  15. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small7(13), 1761–1766 (2011). [CrossRef] [PubMed]
  16. A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett.12(5), 2625–2630 (2012). [CrossRef] [PubMed]
  17. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  18. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett.12(11), 6000–6004 (2012). [CrossRef] [PubMed]
  19. Y.-K. Choi, T.-J. King, and C. Hu, “A spacer patterning technology for nanoscale CMOS,” IEEE Trans. Electron Devices49(3), 436–441 (2002). [CrossRef]
  20. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of Sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003). [CrossRef]
  21. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11(7), 2606–2610 (2011). [CrossRef] [PubMed]
  22. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  23. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012). [CrossRef] [PubMed]
  24. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  25. D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem.84(1), 1–20 (1977). [CrossRef]
  26. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  27. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-Enhanced Raman Scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  28. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater.9(1), 60–67 (2010). [CrossRef] [PubMed]
  29. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol.6(7), 452–460 (2011). [CrossRef] [PubMed]
  30. Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in Surface-Enhanced Raman Scattering,” Science321(5887), 388–392 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited