OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16648–16656

Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16648-16656 (2013)
http://dx.doi.org/10.1364/OE.21.016648


View Full Text Article

Enhanced HTML    Acrobat PDF (2077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, we assemble the central components of a spectral-domain OCT system on a silicon chip. The spectrometer comprises an arrayed-waveguide grating with 136-nm free spectral range and 0.21-nm wavelength resolution. The beam splitter is realized by a non-uniform adiabatic coupler with its 3-dB splitting ratio being nearly constant over 150 nm. With this device whose overall volume is 0.36 cm3 we demonstrate high-quality in vivo imaging in human skin with 1.4-mm penetration depth, 7.5-µm axial resolution, and a signal-to-noise ratio of 74 dB. Considering the reasonable performance of this early OCT on-a-chip system and the anticipated improvements in this technology, a completely different range of devices and new fields of applications may become feasible.

© 2013 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 3, 2013
Revised Manuscript: June 28, 2013
Manuscript Accepted: June 29, 2013
Published: July 3, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, "Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip," Opt. Express 21, 16648-16656 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F.  Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010). [CrossRef] [PubMed]
  3. D.  Culemann, A.  Knuettel, E.  Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 6(5), 730–734 (2000). [CrossRef]
  4. E.  Margallo-Balbás, M.  Geljon, G.  Pandraud, P. J.  French, “Miniature 10 kHz thermo-optic delay line in silicon,” Opt. Lett. 35(23), 4027–4029 (2010). [CrossRef] [PubMed]
  5. G.  Yurtsever, P.  Dumon, W.  Bogaerts, R.  Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75541B (2010). [CrossRef]
  6. M. K.  Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988). [CrossRef]
  7. D.  Choi, H.  Hiro-Oka, H.  Furukawa, R.  Yoshimura, M.  Nakanishi, K.  Shimizu, K.  Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33(12), 1318–1320 (2008). [CrossRef] [PubMed]
  8. D. H.  Choi, H.  Hiro-Oka, K.  Shimizu, K.  Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012). [CrossRef] [PubMed]
  9. Y.  Jiao, B. W.  Tilma, J.  Kotani, R.  Nötzel, M. K.  Smit, S.  He, E. A.  Bente, “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm,” Opt. Express 20(4), 3675–3692 (2012). [CrossRef] [PubMed]
  10. B. W.  Tilma, Y.  Jiao, J.  Kotani, E.  Smalbrugge, H. P. M. M.  Ambrosius, P. J.  Thijs, X. J. M.  Leijtens, R.  Nötzel, M. K.  Smit, E. A. J. M.  Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 µm wavelength region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012). [CrossRef]
  11. B. I.  Akca, V. D.  Nguyen, J.  Kalkman, N.  Ismail, G.  Sengo, F.  Sun, T. G.  van Leeuwen, A.  Driessen, M.  Pollnau, K.  Wörhoff, R. M.  de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012). [CrossRef]
  12. V. D.  Nguyen, B. I.  Akca, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, T. G.  van Leeuwen, J.  Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett. 36(7), 1293–1295 (2011). [CrossRef] [PubMed]
  13. B. I.  Akca, L.  Chang, G.  Sengo, K.  Wörhoff, R. M.  de Ridder, M.  Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 24, 848–850 (2012).
  14. V. D.  Nguyen, N.  Weiss, W.  Beeker, M.  Hoekman, A.  Leinse, R. G.  Heideman, T. G.  van Leeuwen, J.  Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012). [CrossRef] [PubMed]
  15. K.  Wörhoff, E. J.  Klein, M. G.  Hussein, A.  Driessen, “Silicon oxynitride based photonics,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2008), pp. 266–269.
  16. W. H.  Louisell, “Analysis of the single tapered mode coupler,” Bell Syst. Tech. J. 33, 853–870 (1955).
  17. M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  18. C. M.  Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916). [CrossRef]
  19. H.  Takahashi, S.  Suzuki, K.  Kato, I.  Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990). [CrossRef]
  20. Z.  Hu, Y.  Pan, A. M.  Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46(35), 8499–8505 (2007). [CrossRef] [PubMed]
  21. K.  Takada, H.  Yamada, K.  Okamoto, “320-channel multiplexer consisting of a 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett. 35(10), 824–826 (1999). [CrossRef]
  22. B. I.  Akca, C. R.  Doerr, G.  Sengo, K.  Wörhoff, M.  Pollnau, R. M.  de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012). [CrossRef] [PubMed]
  23. B.  Hofer, B.  Povazay, B.  Hermann, A.  Unterhuber, G.  Matz, W.  Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009). [CrossRef] [PubMed]
  24. E.  Fuchs, S.  Raghavan, “Getting under the skin of epidermal morphogenesis,” Nat. Rev. Genet. 3(3), 199–209 (2002). [CrossRef] [PubMed]
  25. A.  Alex, B.  Povazay, B.  Hofer, S.  Popov, C.  Glittenberg, S.  Binder, W.  Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010). [CrossRef] [PubMed]
  26. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, Berlin, New York, 2008), pp. 47–72.
  27. M. M.  Spühler, B. J.  Offrein, G.  Bona, R.  Germann, I.  Massarek, D.  Erni, “A very short planar silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol. 16(9), 1680–1685 (1998). [CrossRef]
  28. O.  Mitomi, K.  Kasaya, H.  Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30(8), 1787–1793 (1994). [CrossRef]
  29. A.  Sugita, A.  Kaneko, K.  Okamoto, M.  Itoh, A.  Himeno, Y.  Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited