OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16657–16662

Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching

An Pan, Jinhai Si, Tao Chen, Yuncan Ma, Feng Chen, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16657-16662 (2013)
http://dx.doi.org/10.1364/OE.21.016657


View Full Text Article

Enhanced HTML    Acrobat PDF (1736 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated a new method to fabricate micron-sized grooves with high aspect ratios in silicon wafers by combining femtosecond laser irradiation and oxygen-dependent acid etching. Femtosecond laser was employed to induce structure changes and incorporate oxygen into silicon, and then materials in oxygen-containing regions were etched by hydrofluoric acid (HF) solution to form grooves. The etching could be attributed to the reaction between HF and silicon oxides formed by femtosecond laser irradiation. The dependences of the aspect ratios of grooves on the laser fluence and the scanning velocity were also investigated.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.4000) Optical devices : Microstructure fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3850) Other areas of optics : Materials processing

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 9, 2013
Revised Manuscript: June 28, 2013
Manuscript Accepted: June 29, 2013
Published: July 3, 2013

Citation
An Pan, Jinhai Si, Tao Chen, Yuncan Ma, Feng Chen, and Xun Hou, "Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching," Opt. Express 21, 16657-16662 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008). [CrossRef] [PubMed]
  2. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012). [CrossRef] [PubMed]
  3. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998). [CrossRef]
  4. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mater. Sci. Eng. Rep.39(4), 93–141 (2002). [CrossRef]
  5. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, T. Gertus, E. Jelmakas, H. Misawa, and S. Juodkazis, “Influence of laser microfabrication on silicon electrochemical behavior in HF solution,” J. Solid State Electrochem.14(5), 797–802 (2010). [CrossRef]
  6. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromaching of grooves in silicon with 800 nm pulses,” Appl. Phys., A Mater. Sci. Process.80(8), 1717–1724 (2005). [CrossRef]
  7. A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express19(11), 10834–10842 (2011). [CrossRef] [PubMed]
  8. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Photoinduced microchannels inside silicon by femtosecond pulses,” Appl. Phys. Lett.93(5), 051112 (2008). [CrossRef]
  9. K. Grigoras, A. J. Niskanen, and S. Franssila, “Plasma etched initial pits for electrochemically etched macroporous silicon structures,” J. Micromech. Microeng.11(4), 371–375 (2001). [CrossRef]
  10. P. Mukherjee, T. H. Zurbuchen, and L. J. Guo, “Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors,” Nanotechnology20(32), 325301 (2009). [CrossRef] [PubMed]
  11. N. Gadegaard, E. Martines, M. O. Riehle, K. Seunarine, and C. D. W. Wilkinson, “Applications of nano-patterning to tissue engineering,” Microelectron. Eng.83(4-9), 1577–1581 (2006). [CrossRef]
  12. W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002). [CrossRef]
  13. W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, “Buried microfluidic channel for integrated patch-clamping assay,” Appl. Phys. Lett.89(9), 093902 (2006). [CrossRef]
  14. R. Hintsche, Ch. Kruse, A. Uhlig, M. Paeschke, T. Lisec, U. Schnakenberg, and B. Wagner, “Chemical microsensor systems for medical applications in catheters,” Sens. Actuators B Chem.27(1-3), 471–473 (1995). [CrossRef]
  15. M. Kuttge, H. Kurz, J. G. Rivas, J. A. Sánchez-Gil, and P. H. Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys.101(2), 023707 (2007). [CrossRef]
  16. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100(12), 123901 (2008). [CrossRef] [PubMed]
  17. E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek, “Advanced plasma processing combined with trench isolation technology for fabrication and fast prototyping of high aspect ratio MEMS in standard silicon wafers,” J. Micromech. Microeng.14(9), S70–S75 (2004). [CrossRef]
  18. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  19. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18(7), 6885–6890 (2010). [CrossRef] [PubMed]
  20. K. Kumar, K. K. C. Lee, P. R. Herman, J. Nogami, and N. P. Kherani, “Femtosecond laser direct hard mask writing for selective facile micron-scale inverted-pyramid patterning of silicon,” Appl. Phys. Lett.101(22), 222106 (2012). [CrossRef]
  21. Y. Ma, H. Shi, J. Si, T. Chen, F. Yan, F. Chen, and X. Hou, “Photoinduced microchannels and element change inside silicon by femtosecond laser pulses,” Opt. Commun.285(2), 140–142 (2012). [CrossRef]
  22. J. Bonse, S. Baudach, J. Krüger, W. Kauteck, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002). [CrossRef]
  23. A. Brodeur and S. L. Chin, “Ultrafast write-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16(4), 637–650 (1999). [CrossRef]
  24. T. Kudrius, G. Slekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D Appl. Phys.43(14), 145501 (2010). [CrossRef]
  25. T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, “High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon,” J. Appl. Phys.103(5), 053104 (2008). [CrossRef]
  26. H. Ubara, T. Imura, and A. Hiraki, “Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment,” Solid State Commun.50(7), 673–675 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited