OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16742–16752

Investigation of interface states in single-negative metamaterial layered structures based on the phase properties

Jian Zheng, Yihang Chen, Zefeng Chen, Xinggang Wang, Peng Han, Zehui Yong, Yu Wang, Chi Wah Leung, and Costas M. Soukoulis  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16742-16752 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The physical mechanism of the interface states in layered structures consisting of single-negative metamaterials is investigated using a simple resonant cavity model. We found that the interface states and their corresponding tunneling transmission modes appeared when the resonant condition is satisfied. Such resonant condition depends on the phase changes inside the resonant cavity. Based on these results, we proposed an efficient method to precisely predict the frequencies of the tunneling interface states inside the single-negative metamaterial layers. Our method is effective for interface states corresponding to perfect or imperfect tunneling transmission. Composite right/left-handed transmission lines were used to realize the pair and sandwich metamaterial layered structures in the microwave region. Electromagnetic tunneling interface states were observed in the measurements, which agreed well with the theory. Our study offers a way for effectively designing metamaterial devices with novel electromagnetic tunneling properties.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5030) Other areas of optics : Phase
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 10, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: July 1, 2013
Published: July 5, 2013

Jian Zheng, Yihang Chen, Zefeng Chen, Xinggang Wang, Peng Han, Zehui Yong, Yu Wang, Chi Wah Leung, and Costas M. Soukoulis, "Investigation of interface states in single-negative metamaterial layered structures based on the phase properties," Opt. Express 21, 16742-16752 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  2. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A, Pure Appl. Opt.7(2), S85–S89 (2005). [CrossRef]
  3. O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett.107(24), 247402 (2011). [CrossRef] [PubMed]
  4. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett.87(26), 261105 (2005). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter14(18), R597–R624 (2002). [CrossRef]
  8. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72(23), 233102 (2005). [CrossRef]
  9. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006). [CrossRef] [PubMed]
  10. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett.101(11), 113902 (2008). [CrossRef] [PubMed]
  11. D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B83(4), 045107 (2011). [CrossRef]
  12. Z. F. Chen, P. Han, C. W. Leung, Y. Wang, M. Hu, and Y. Chen, “Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals,” Opt. Express20(19), 21618–21626 (2012). [CrossRef] [PubMed]
  13. A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B85(20), 205130 (2012). [CrossRef]
  14. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag.51(10), 2558–2571 (2003). [CrossRef]
  15. D. K. Qing and G. Chen, “Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability,” Appl. Phys. Lett.84(5), 669–671 (2004). [CrossRef]
  16. T. Fujishige, C. Caloz, and T. Itoh, “Experimental demonstration of transparency in the ENG-MNG pair in a CRLH transmission line implementation,” Microw. Opt. Technol. Lett.46(5), 476–481 (2005). [CrossRef]
  17. A. Alù, N. Engheta, and R. W. Ziolkowski, “Finite-difference time-domain analysis of the tunneling and growing exponential in a pair of ε-negative and μ-negative slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016604 (2006). [CrossRef] [PubMed]
  18. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066607 (2004). [CrossRef] [PubMed]
  19. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett.89(14), 141101 (2006). [CrossRef]
  20. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B75(12), 125118 (2007). [CrossRef]
  21. T. H. Feng, Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, “Electromagnetic tunneling in a sandwich structure containing single negative media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026601 (2009). [CrossRef] [PubMed]
  22. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Microw. Theory Tech.51, 2558–2571 (2003).
  23. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  24. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making Tunnel Barriers (Including Metals) Transparent,” Phys. Rev. Lett.97(5), 053902 (2006). [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridg University Press, Cambridge, 1999).
  26. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(44 Pt 2B), 046607 (2002). [CrossRef] [PubMed]
  27. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001). [CrossRef]
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  29. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009). [CrossRef]
  30. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  31. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  32. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  33. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L–C loaded transmission lines,” IEEE Trans. Microw. Theory Tech.50(12), 2702–2712 (2002). [CrossRef]
  34. C. Caloz, A. Lai, and T. Itoh, “The challenge of homogenization in metamaterials,” New J. Phys.7, 167 (2005). [CrossRef]
  35. I. Bahl, “Lumped Elements for RF and Microwave Circuits,” (Artech House, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited