OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16753–16762

General properties of the surface charge pattern of one-dimensional metallic gratings

Haitao Liu and Philippe Lalanne  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16753-16762 (2013)
http://dx.doi.org/10.1364/OE.21.016753


View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Under light illumination, metallic gratings present unexpected and fascinating phenomena, which are due to the complex charge patterns generated on the grating surfaces. The moving electrons are due to the launching of surface plasmon polaritons (SPPs), but only in part. We derive analytical expressions quantifying the plasmonic character of the surface charge patterns, i.e. the contribution of SPPs to its formation. The expressions have a general significance, in the sense that they may be applied to a variety of geometries and spectral ranges, irrespective of whether the grating absorbs, transmits, reflects, or how strongly it resonates.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 15, 2013
Revised Manuscript: June 23, 2013
Manuscript Accepted: June 24, 2013
Published: July 5, 2013

Citation
Haitao Liu and Philippe Lalanne, "General properties of the surface charge pattern of one-dimensional metallic gratings," Opt. Express 21, 16753-16762 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16753


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 396–402 (1902).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976). [CrossRef]
  4. F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett.105(24), 243901 (2010). [CrossRef] [PubMed]
  7. W. Wang, S. M. Wu, R. J. Knize, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Enhanced photon absorption and carrier generation in nanowire solar cells,” Opt. Express20(4), 3733–3743 (2012). [CrossRef] [PubMed]
  8. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  9. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006). [CrossRef]
  10. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009). [CrossRef]
  11. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.2(4), 262–267 (2006). [CrossRef]
  12. F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature492(7429), 411–414 (2012). [CrossRef] [PubMed]
  13. G. A. Zheng, X. Q. Cui, and C. H. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A.107(20), 9043–9048 (2010). [CrossRef] [PubMed]
  14. X. P. Huang and M. L. Brongersma, “Rapid computation of light scattering from aperiodic plasmonic structures,” Phys. Rev. B84(24), 245120 (2011). [CrossRef]
  15. T. Tanemura, P. Wahl, S. H. Fan, and D. A. B. Miller, “Modal source radiator model for arbitrary two-dimensional arrays of subwavelength apertures on metal films,” IEEE J. Sel. Top. Quantum Electron.19(3), 4601110 (2013). [CrossRef]
  16. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95(26), 263902 (2005). [CrossRef] [PubMed]
  17. In this work, we use the values tabulated in E. D. Palik, Handbook of Optical Constants of Solids, Part II (Academic, 1985), for the refractive index nm of gold for λ<10 µm. For λ>10 µm we use a Drude model, nm(λ)2 = ε∞−λp−2/[λ−1(λ−1 + iλγ−1)], with ε∞ = 8.842, λp = 0.164 µm and λγ = 20.689 µm.
  18. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett.102(15), 153903 (2009). [CrossRef] [PubMed]
  19. H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010). [CrossRef]
  20. This is the reason why, in relation with Fig. 1(c), the polarization of the source used to calculate F has not been specified.
  21. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  22. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  23. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998). See the free software downloadable at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe
  24. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  25. D. Maystre, A. L. Fehrembach, and E. Popov, “Plasmonic antiresonance through subwavelength hole arrays,” J. Opt. Soc. Am. A28(3), 342–355 (2011). [CrossRef] [PubMed]
  26. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002). [CrossRef]
  27. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A, Pure Appl. Opt.9(5), 490–495 (2007). [CrossRef]
  28. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited