OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16763–16776

Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser

Yung-Hsiang Lin, Chun-Yu Yang, Jia-Hong Liou, Chin-Ping Yu, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16763-16776 (2013)
http://dx.doi.org/10.1364/OE.21.016763


View Full Text Article

Enhanced HTML    Acrobat PDF (3011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4236) Materials : Nanomaterials
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 15, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: May 30, 2013
Published: July 5, 2013

Citation
Yung-Hsiang Lin, Chun-Yu Yang, Jia-Hong Liou, Chin-Ping Yu, and Gong-Ru Lin, "Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser," Opt. Express 21, 16763-16776 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. L. Bao, H. Zhang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  2. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
  3. H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, K. P. Loh, “Large energy soliton erbium-doped fber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]
  4. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  5. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010). [CrossRef]
  6. Y. M. Chang, H. Kim, J. H. Lee, Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010). [CrossRef]
  7. A. Martinez, K. Fuse, S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99(12), 121107 (2011). [CrossRef]
  8. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012). [CrossRef] [PubMed]
  9. G. Sobon, J. Sotor, K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012). [CrossRef]
  10. G.-R. Lin, Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011). [CrossRef]
  11. Y. H. Lin, G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9(5), 398–404 (2012). [CrossRef]
  12. Y. H. Lin, G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013). [CrossRef]
  13. Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011). [CrossRef]
  14. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano 5(3), 2332–2339 (2011). [CrossRef] [PubMed]
  15. J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano 3(8), 2367–2375 (2009). [CrossRef] [PubMed]
  16. D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, T. Ryhänen, “Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices,” Chem. Commun. (Camb.) 48(9), 1239–1241 (2012). [CrossRef] [PubMed]
  17. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, K. P. Loh, B. Lin, S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010). [CrossRef]
  19. G.-R. Lin, J.-Y. Chang, Y.-S. Liao, H.-H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability,” Opt. Express 14(21), 9743–9749 (2006). [CrossRef] [PubMed]
  20. G.-R. Lin, I.-H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz,” Opt. Express 13(22), 8772–8780 (2005). [CrossRef] [PubMed]
  21. Q. L. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010). [CrossRef]
  22. H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fber laser,” Appl. Phys. Lett. 96(11), 111112 (2010). [CrossRef]
  23. A. Martinez, K. Fuse, B. Xu, S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  24. H. Kim, J. H. Cho, S. Y. Jang, Y. W. Song, “Deformation immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett. 98(2), 021104 (2011). [CrossRef]
  25. A. Martinez, K. Fuse, S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99(12), 121107 (2011). [CrossRef]
  26. J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express 19(5), 4036–4041 (2011). [CrossRef] [PubMed]
  27. J. Sotor, G. Sobon, K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett. 37(11), 2166–2168 (2012). [CrossRef] [PubMed]
  28. K. N. Cheng, Y. H. Lin, S. Yamashita, G.-R. Lin, “Harmonic order dependent pulsewidth shortening of a passively mode-locked fiber laser with carbon nanotube saturable absorber,” IEEE Photon. J 4(5), 1542–1552 (2012). [CrossRef]
  29. G. Sobon, J. Sotor, K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012). [CrossRef]
  30. G. Sobon, J. Sotor, K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012). [CrossRef]
  31. J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, Y. P. Hao, “L-Band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9, 896–900 (2012).
  32. Y. C. Meng, S. Zhang, X. Li, H. Li, J. Du, Y. P. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012). [CrossRef] [PubMed]
  33. K. N. Cheng, Y. H. Lin, G.-R. Lin, “Single- and double-walled CNT based saturable absorbers for passively mode-locking erbium-doped fiber laser,” Laser Phys. 23(4), 045105 (2013). [CrossRef]
  34. Y. H. Lin, Y. C. Chi, G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10(5), 055105 (2013). [CrossRef]
  35. Y. W. Song, S. Y. Jang, W.-S. Han, M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]
  36. Z. B. Liu, X. He, D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36(16), 3024–3026 (2011). [CrossRef] [PubMed]
  37. Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012). [CrossRef]
  38. S. Y. Choi, D. K. Cho, Y. W. Song, K. Oh, K. Kim, F. Rotermund, D. I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking,” Opt. Express 20(5), 5652–5657 (2012). [CrossRef] [PubMed]
  39. J. Z. Wang, Z. Luo, M. Zhou, C. C. Ye, H. Fu, Z. P. Cai, H. H. Cheng, H. Y. Xu, W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J. 4(5), 1295–1305 (2012). [CrossRef]
  40. J. Lee, J. Koo, P. Debnath, Y.-W. Song, J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10(3), 035103 (2013). [CrossRef]
  41. G.-R. Lin, C. L. Pan, Y. T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol. 25(11), 3597–3601 (2007). [CrossRef]
  42. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006). [CrossRef] [PubMed]
  43. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano 2(11), 2301–2305 (2008). [CrossRef] [PubMed]
  44. M. J. Allen, V. C. Tung, R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev. 110(1), 132–145 (2010). [CrossRef] [PubMed]
  45. O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, C. Galiotis, “Raman 2D-band splitting in graphene: theory and experiment,” ACS Nano 5(3), 2231–2239 (2011). [CrossRef] [PubMed]
  46. E. Hecht, Optics (Addison Wesley, 4th Edition).
  47. H. Zhang, S. Virally, Q. L. Bao, L. K. Ping, S. Massar, N. Godbout, P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012). [CrossRef] [PubMed]
  48. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. (Wiley, New York, 1991).
  49. G.-R. Lin, I.-H. Chiu, M. C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,” Opt. Express 13(3), 1008–1014 (2005). [CrossRef] [PubMed]
  50. G.-R. Lin, J. J. Kang, C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express 18(9), 9570–9579 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited