OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16831–16853

Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices

Chia-Chi Liao and Yu-Lung Lo  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16831-16853 (2013)
http://dx.doi.org/10.1364/OE.21.016831


View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties, respectively. It is shown that the proposed hybrid model not only yields full-range measurements of all the anisotropic parameters, but is also more accurate and more stable than the decomposition method. Moreover, compared to the decomposition method, the proposed model more accurately reflects the dependency of the phase retardation angle and linear dichroism angle on the direction of the external magnetic field for ferrofluidic samples. Overall, the results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties.

© 2013 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(290.7050) Scattering : Turbid media

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 24, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 30, 2013
Published: July 5, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Chia-Chi Liao and Yu-Lung Lo, "Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices," Opt. Express 21, 16831-16853 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  2. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
  3. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-Integrating-Sphere System for Measuring the Optical Properties of Tissue,” Appl. Opt.32(4), 399–410 (1993). [CrossRef] [PubMed]
  4. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt.36(1), 402–415 (1997). [CrossRef] [PubMed]
  5. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt.36(1), 386–396 (1997). [CrossRef] [PubMed]
  6. G. Pal, S. Basu, K. Mitra, and T. Vo-Dinh, “Time-resolved optical tomography using short-pulse laser for tumor detection,” Appl. Opt.45(24), 6270–6282 (2006). [CrossRef] [PubMed]
  7. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express14(12), 5418–5432 (2006). [CrossRef] [PubMed]
  8. S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995). [CrossRef]
  9. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt.40(22), 3810–3821 (2001). [CrossRef] [PubMed]
  10. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt.9(3), 534–540 (2004). [CrossRef] [PubMed]
  11. S. J. Yeh, O. S. Khalil, C. F. Hanna, and S. Kantor, “Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin,” J. Biomed. Opt.8(3), 534–544 (2003). [CrossRef] [PubMed]
  12. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005). [CrossRef] [PubMed]
  13. R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, “Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique,” Appl. Opt.43(17), 3401–3407 (2004). [CrossRef] [PubMed]
  14. C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006). [CrossRef] [PubMed]
  15. B. D. Cameron, M. J. Rakovic, M. Mehrübeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett.23(7), 485–487 (1998). [CrossRef] [PubMed]
  16. G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE4617, 208–220 (2002). [CrossRef]
  17. B. D. Cameron, Y. Li, and A. Nezhuvingal, “Determination of optical scattering properties in turbid media using Mueller matrix imaging,” J. Biomed. Opt. 11, 054031 (2006).
  18. X. Wang, G. Yao, and L. V. Wang, “Monte Carlo Model and Single-Scattering Approximation of the Propagation of Polarized Light in Turbid Media Containing Glucose,” Appl. Opt.41(4), 792–801 (2002). [CrossRef] [PubMed]
  19. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002). [CrossRef] [PubMed]
  20. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009). [CrossRef] [PubMed]
  21. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105, 102023 (2009).
  22. X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010). [CrossRef] [PubMed]
  23. N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
  24. T.-T.-H. Pham and Y.-L. Lo, “Extraction of effective parameters of turbid media utilizing Mueller matrix approach -A study of glucose sensing,” J. Biomed. Opt.17(9), 097002 (2012). [CrossRef]
  25. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus,” J. Opt. Soc. Am.68(12), 1756–1767 (1978). [CrossRef]
  26. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett.36(12), 2330–2332 (2011). [CrossRef] [PubMed]
  27. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett.36(13), 2429–2431 (2011). [CrossRef] [PubMed]
  28. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering,” Opt. Express19(15), 14348–14353 (2011). [CrossRef] [PubMed]
  29. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy, Academic Press, Inc. (1990).
  30. P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, and T. T. Yang, “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Express17(18), 15860–15884 (2009). [CrossRef] [PubMed]
  31. Y. L. Lo, T. T. H. Pham, and P. C. Chen, “Characterization on five effective parameters of anisotropic optical material using Stokes parameters-Demonstration by a fiber-type polarimeter,” Opt. Express18(9), 9133–9150 (2010). [CrossRef] [PubMed]
  32. J. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta (Lond.)33(2), 185–189 (1986). [CrossRef]
  33. R. A. Chipman, “Depolarization index and the average degree of polarization,” Appl. Opt.44(13), 2490–2495 (2005). [CrossRef] [PubMed]
  34. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt.44(26), 5434–5445 (2005). [CrossRef] [PubMed]
  35. Z. Michalewicz, Genetic Algorithm + Data structure = Evolution Programs (Springer-Verlag, New York 1994).
  36. H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm, and two thermally modulated intensity,” J. Lightwave Technol.23(6), 2158–2168 (2005). [CrossRef]
  37. T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol.25(3), 946–951 (2007). [CrossRef]
  38. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, “Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles,” J. Am. Chem. Soc.126(1), 273–279 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited