OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16854–16862

Size-controlled InGaN/GaN nanorod array fabrication and optical characterization

Si-Young Bae, Duk-Jo Kong, Jun-Yeob Lee, Dong-Ju Seo, and Dong-Seon Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16854-16862 (2013)
http://dx.doi.org/10.1364/OE.21.016854


View Full Text Article

Enhanced HTML    Acrobat PDF (2575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a cost-effective top-down approach for fabricating InGaN/GaN nanorod arrays using a wet treatment process in a KOH solution. The average diameter of the as-etched nanorods was effectively reduced from 420 nm to 180 nm. The spatial strain distribution was then investigated by measuring the high-resolution cathodoluminescence directly on top of the nanorods. The smaller nanorods showed a higher internal quantum efficiency and lower potential fluctuation, which can subsequently be exploited for high-efficiency photonic devices.

© 2013 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: May 6, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 28, 2013
Published: July 5, 2013

Citation
Si-Young Bae, Duk-Jo Kong, Jun-Yeob Lee, Dong-Ju Seo, and Dong-Seon Lee, "Size-controlled InGaN/GaN nanorod array fabrication and optical characterization," Opt. Express 21, 16854-16862 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16854


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009). [CrossRef]
  2. F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences,” Phys. Status Solidi216(1), 391–398 (1999) (b). [CrossRef]
  3. T. Wang, J. Bai, S. Sakai, and J. K. Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes,” Appl. Phys. Lett.78(18), 2617–2619 (2001). [CrossRef]
  4. P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth,” Rep. Prog. Phys.67(5), 667–715 (2004). [CrossRef]
  5. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  6. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009). [CrossRef]
  7. J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013). [CrossRef]
  8. R. M. Farrel, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  9. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-21) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol.9(4), 190–198 (2013). [CrossRef]
  10. J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull.34(05), 304–312 (2009). [CrossRef]
  11. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009). [CrossRef]
  12. Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010). [CrossRef]
  13. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011). [CrossRef]
  14. X. A. Cao, S. F. Leboeuf, M. P. D’evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Appl. Phys. Lett.84(21), 4313–4315 (2001).
  15. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: effects of reactor pressure in MOVPE growth,” Phys. Status Solidi176(1), 535–543 (1999) (a). [CrossRef]
  16. S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl. Phys.111(7), 071101 (2012). [CrossRef]
  17. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  18. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, and G. C. Yi, “Visible-color-tunable light-emitting diodes,” Adv. Mater.23(29), 3284–3288 (2011). [CrossRef] [PubMed]
  19. T. W. Yeh, Y. T. Lin, L. S. Stewart, P. D. Dapkus, R. Sarkissian, J. D. O’Brien, B. Ahn, and S. R. Nutt, “InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays,” Nano Lett.12(6), 3257–3262 (2012). [CrossRef] [PubMed]
  20. R. Bardoux, M. Funato, A. Kaneta, Y. Kawakami, A. Kikuchi, and K. Kishino, “Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures,” Opt. Mater. Express3(1), 47–53 (2013). [CrossRef]
  21. Y. H. Ko, J. H. Kim, L. H. Jin, S. M. Ko, B. J. Kwon, J. Kim, T. Kim, and Y. H. Cho, “Electrically driven quantum dot/wire/well hybrid light-emitting diodes,” Adv. Mater.23(45), 5364–5369 (2011). [CrossRef] [PubMed]
  22. T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39 (Part 1, No. 2A), 413–416 (2000).
  23. A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. A. Suleiman, S. Merzsch, J. Wei, S. Li, H. H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, “The nanorod approach: GaN nanoLEDs for solid state lighting,” Phys. Status Solidi8(7–8), 2296–2301 (2011) (c).
  24. A. R. Madaria, M. Yao, C. Y. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett.12(6), 2839–2845 (2012). [CrossRef] [PubMed]
  25. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010). [CrossRef]
  26. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  27. X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013). [CrossRef]
  28. H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol. B24(4), 1909–1912 (2006). [CrossRef]
  29. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express16(14), 10549–10556 (2008). [CrossRef] [PubMed]
  30. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett.34(11), 1702–1704 (2009). [CrossRef] [PubMed]
  31. P. Shields, M. Hugues, J. Zúñiga-Pérez, M. Cooke, M. Dineen, W. Wang, F. Causa, and D. Allsopp, “Fabrication and properties of etched GaN nanorods,” Phys. Status Solidi8(3–4), 631–634 (2012) (c).
  32. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D Appl. Phys.44(39), 395102 (2011). [CrossRef]
  33. Y. R. Wu, C. Chiu, C. Y. Chang, P. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron.15(4), 1226–1233 (2009). [CrossRef]
  34. C. H. Chang, L. Y. Chen, L. C. Huang, Y. T. Wang, T. C. Lu, and J. J. Huang, “Effects of strains and defects on the internal quantum efficiency of InGaN/GaN nanorod light emitting diodes,” IEEE J. Sel. Top. Quantum Electron.48(4), 551–556 (2012). [CrossRef]
  35. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011). [CrossRef] [PubMed]
  36. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, “Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy,” J. Appl. Phys.90(8), 4219–4223 (2001). [CrossRef]
  37. S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett.18(14), 1512–1514 (2006). [CrossRef]
  38. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–877 (2004). [CrossRef]
  39. Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express19(S2Suppl 2), A157–A165 (2011). [CrossRef] [PubMed]
  40. S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G. M. Yang, “An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes,” Opt. Express21(6), 7125–7130 (2013). [CrossRef] [PubMed]
  41. C. W. Hsu, Y. C. Lee, H. L. Chen, and Y. F. Chou, “Optimizing textured structures possessing both optical gradient and diffraction properties to increase the extraction efficiency of light-emitting diodes,” Photon. Nano. Fund. Appl.10(4), 523–533 (2012). [CrossRef]
  42. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009). [CrossRef]
  43. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, and T. Mukai, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi183(1), 41–50 (2001) (a). [CrossRef]
  44. X. A. Cao, H. Cho, S. J. Pearton, G. T. Dang, A. P. Zhang, R. J. Shul, L. Zhang,, R. Hickman, and J. M. Van Hove, “Depth and thermal stability of dry etch damage in GaN schottky diodes,” Appl. Phys. Lett.75(2), 232–234 (1999). [CrossRef]
  45. L. Y. Chen, H. H. Huang, C. H. Chang, Y. Y. Huang, Y. R. Wu, and J. J. Huang, “Investigation of the strain induced optical transition energy shift of the GaN nanorod light emitting diode arrays,” Opt. Express19(S4), A900–A907 (2011). [CrossRef] [PubMed]
  46. L. Y. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen, and J. J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes,” Opt. Express18(8), 7664–7669 (2010). [CrossRef] [PubMed]
  47. J. M. Lee, C. Huh, D. J. Kim, and S. J. Park, “Dry-etch damage and its recovery in InGaN/GaN multi-quantum-well light-emitting diodes,” Semicond. Sci. Technol.18(6), 530–534 (2003). [CrossRef]
  48. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998). [CrossRef]
  49. T. Kim, J. Kim, M. S. Yang, S. Lee, Y. Park, U. I. Chung, and Y. Cho, “Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure,” Appl. Phys. Lett.97(24), 241111 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited