OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16908–16913

Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators

Ming Li, Xiang Wu, Liying Liu, and Lei Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16908-16913 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silica micro-bubble resonators (MBRs) with cavity quality factor as high as Q = 5 × 107 are fabricated. The total dispersion of MBRs is analyzed. The thin-wall structure opens a new anomalous dispersion window and thus supports the dispersion compensation for hyper-parametric frequency conversion processes. Experimentally, Kerr parametric oscillation is observed in a 136 μm diameter MBR, frequency comb generation is also realized. Meanwhile the same nonlinear process is not allowed in solid silica spheres with size smaller than 150 μm.

© 2013 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.2035) Integrated optics : Dispersion compensation devices
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Nonlinear Optics

Original Manuscript: May 7, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 16, 2013
Published: July 9, 2013

Ming Li, Xiang Wu, Liying Liu, and Lei Xu, "Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators," Opt. Express 21, 16908-16913 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012). [CrossRef]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic Microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  4. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with Monolithic Whispering Gallery Mode Resonators,” Phys. Rev. Lett.104(10), 103902 (2010). [CrossRef] [PubMed]
  5. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011). [CrossRef] [PubMed]
  6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Dispersion compensation in whispering-gallery Modes,” J. Opt. Soc. Am. A20(1), 157–162 (2003). [CrossRef] [PubMed]
  7. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  8. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion,” Nat. Photonics3(9), 529–533 (2009). [CrossRef]
  9. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express20(25), 27661–27669 (2012). [CrossRef] [PubMed]
  10. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20(24), 26337–26344 (2012). [CrossRef] [PubMed]
  11. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19(9), 8102–8107 (2011). [CrossRef] [PubMed]
  12. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012). [CrossRef] [PubMed]
  13. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16(6), 4130–4144 (2008). [CrossRef] [PubMed]
  14. S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity Boundary Conditions in a Normally Dispersive Optical Fiber,” Phys. Rev. Lett.79(21), 4139–4142 (1997). [CrossRef]
  15. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery- mode resonators,” Phys. Rev. A82(3), 033801 (2010). [CrossRef]
  16. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009). [CrossRef] [PubMed]
  17. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett.36(17), 3521–3523 (2011). [CrossRef] [PubMed]
  18. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express18(24), 25081–25088 (2010). [CrossRef] [PubMed]
  19. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011). [CrossRef] [PubMed]
  20. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett.35(11), 1866–1868 (2010). [CrossRef] [PubMed]
  21. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A76(4), 043837 (2007). [CrossRef]
  22. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17(18), 16209–16215 (2009). [CrossRef] [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  24. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett.18(23), 1996–1998 (1993). [CrossRef] [PubMed]
  25. C. A. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express19, 4357–4362 (2006).
  26. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  27. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express15(20), 12755–12762 (2007). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  29. W. Robert, Boyd, Nonlinear Optics, 3rd Ed. (Elsevier, 2010).
  30. B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillationsin ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett.87(18), 181109 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited