OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16934–16945

Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules

F.S.F. Brossard, B.P.L. Reid, C.C.S. Chan, X. L. Xu, J. P. Griffiths, D.A. Williams, R. Murray, and R.A. Taylor  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16934-16945 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the coupling of cavities defined by the local modulation of the waveguide width using confocal photoluminescence microscopy. We are able to spatially map the profile of the antisymmetric (antibonding) and symmetric (bonding) modes of a pair of strongly coupled cavities (photonic molecule) and follow the coupled cavity system from the strong coupling to the weak coupling regime in the presence of structural disorder. The effect of disorder on this photonic molecule is also investigated numerically with a finite-difference time-domain method and a semi-analytical approach, which enables us to quantify the light localization observed in either cavity as a function of detuning.

© 2013 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: April 30, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 24, 2013
Published: July 9, 2013

F.S.F. Brossard, B.P.L. Reid, C.C.S. Chan, X. L. Xu, J. P. Griffiths, D.A. Williams, R. Murray, and R.A. Taylor, "Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules," Opt. Express 21, 16934-16945 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett.81(12), 2582–2585 (1998). [CrossRef]
  2. S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett.87(18), 181102 (2005). [CrossRef]
  3. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, “Switchable lasing in multimode microcavities,” Phys. Rev. Lett.99(7), 073902 (2007). [CrossRef] [PubMed]
  4. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express3(1), 4–11 (1998). [CrossRef] [PubMed]
  5. E. I. Simakov, L. M. Earley, C. E. Heath, D. Yu. Shchegolkov, and B. D. Schultz, “First experimental demonstration of a photonic band gap channel-drop filter at 240 GHz,” Rev. Sci. Instrum.81(10), 104701 (2010). [CrossRef] [PubMed]
  6. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004). [CrossRef] [PubMed]
  7. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature466(7303), 217–220 (2010). [CrossRef] [PubMed]
  8. T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett.104(18), 183601 (2010). [CrossRef] [PubMed]
  9. M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A83(2), 021802 (2011). [CrossRef]
  10. M. Bamba and C. Ciuti, “Counter-polarized single-photon generation from the auxiliary cavity of a weakly nonlinear photonic molecule,” Appl. Phys. Lett.99(17), 171111 (2011). [CrossRef]
  11. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  12. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008). [CrossRef]
  13. M. J. Hartmann, F. G. S. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys.2(12), 849–855 (2006). [CrossRef]
  14. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A76(3), 031805 (2007). [CrossRef]
  15. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007). [CrossRef] [PubMed]
  16. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal Microcavities,” Appl. Phys. Lett.94(15), 151103 (2009). [CrossRef]
  17. S. Lam, A. R. Chalcraft, D. Szymanski, R. Oulton, B. D. Jones, D. Sanvitto, D. M. Whittaker, M. Fox, M. S. Skolnick, D. O'Brien, T. F. Krauss, H. Liu, P. W. Fry, and M. Hopkinson, “Coupled resonant modes of dual L3-defect planar photonic crystal cavities,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper QFG6. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2008-QFG6
  18. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express16(20), 16255–16264 (2008). [CrossRef] [PubMed]
  19. M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett.99(11), 111101 (2011). [CrossRef]
  20. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vuckovic, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B86(4), 045315 (2012). [CrossRef]
  21. K. Foubert, B. Cluzel, L. Lalouat, E. Picard, D. Peyrade, F. de Fornel, and E. Hadji, “Influence of dimensional fluctuations on the optical coupling between nanobeam twin cavities,” Phys. Rev. B85(23), 235454 (2012). [CrossRef]
  22. L. C. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Stat. Sol. B242(11), 2197–2209 (2005). [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  24. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys.107, 6756-6769 (1997). Erratum, ibid. 109, 4128 (1998).
  25. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  26. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  27. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett.97(11), 111101 (2010). [CrossRef]
  28. K. H. Lee, A. M. Green, R. A. Taylor, D. N. Sharp, J. Scrimgeour, O. M. Roche, J. H. Na, A. F. Jarjour, A. J. Turberfield, F. S. F. Brossard, D. A. Williams, and G. A. D. Briggs, “Registration of single quantum dots using cryogenic laser photolithography,” Appl. Phys. Lett.88(19), 193106 (2006). [CrossRef]
  29. D. C. Reynolds, K. K. Bajaj, C. W. Litton, G. Peters, P. W. Yu, and J. D. Parsons, “Refractive index, n, and dispersion, −dn/dλ, of GaAs at 2 K determined from Fabry–Perot cavity oscillations,” J. Appl. Phys.61(1), 342–345 (1987). [CrossRef]
  30. C. Cohen-Tannoudji, B. Diu, and F. Lalöe, Quantum Mechanics (Wiley-Interscience, Paris, 1977), Chap. 4.
  31. N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B86(3), 035133 (2012). [CrossRef]
  32. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express19(6), 5670–5675 (2011). [CrossRef] [PubMed]
  33. C. Kottke, A. Farjadpour, and S. G. Johnson, “Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(3), 036611 (2008). [CrossRef] [PubMed]
  34. N. Caselli, F. Intonti, C. Bianchi, F. Riboli, S. Vignolini, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Post-fabrication control of evanescent tunnelling in photonic crystal molecules,” Appl. Phys. Lett.101(21), 211108 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited