OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16992–17006

Metamaterial filters at optical-infrared frequencies

Jean-Baptiste Brückner, Judikaël Le Rouzo, Ludovic Escoubas, Gérard Berginc, Olivier Calvo-Perez, Nicolas Vukadinovic, and François Flory  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 16992-17006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose two distinctive designs of metamaterials demonstrating filtering functions in the visible and near infrared region. Since the emissivity is related to the absorption of a material, these filters would then offer a high emissivity in the visible and near infrared, and a low one beyond those wavelengths. Usually, such a system find their applications in the thermo-photovoltaics field as it can find as well a particular interest in optoelectronics, especially for optical detection. Numerical analysis has been performed on common metamaterial designs: a perforated metallic plate and a metallic cross grating. Through all these structures, we have demonstrated the various physical phenomena contributing to a reduction in the reflectivity in the optical and near infrared region. By showing realistic geometric parameters, the structures were not only designed to demonstrate an optical filtering function but were also meant to be feasible on large surfaces by lithographic methods such as micro contact printing or nano-imprint lithography.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:

Original Manuscript: March 5, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: June 28, 2013
Published: July 10, 2013

Jean-Baptiste Brückner, Judikaël Le Rouzo, Ludovic Escoubas, Gérard Berginc, Olivier Calvo-Perez, Nicolas Vukadinovic, and François Flory, "Metamaterial filters at optical-infrared frequencies," Opt. Express 21, 16992-17006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Munk, in Frequency Selective Surfaces (John Wiley and Sons, 2000).
  2. G. R. Fowles, in Introduction to Modern Optics 2nd ed. (Dover Publications, 1989).
  3. W. H. Emerson, “Electromagnetic wave absorbers and anechoid chambers through the years,” IEEE Trans. Antenn. Propag.21(4), 484–490 (1973). [CrossRef]
  4. H. A. MacLeod, in Thin-Film Optical Filters, 4th ed. (T. and Francis Ed. 2010), p. 668.
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  11. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative index plsamonic metamaterial,” Phys. Rev. B79(4), 045131 (2009). [CrossRef]
  12. G. Berginc, “Structured surfaces and applications,” Int. J. Mater. Prod. Tec.34(4), 371–383 (2009). [CrossRef]
  13. W. Cai and V. Shalaev, in Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  14. L. Escoubas, R. Bouffaron, V. Brissonneau, J. J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett.35(9), 1455–1457 (2010). [CrossRef] [PubMed]
  15. H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R. Vasant Kumar, G. A. J. Amaratunga, and T. D. Wilkinson, “Cylindrical Fresnel lenses based on carbon nanotube forests,” Appl. Phys. Lett.101(24), 243116 (2012). [CrossRef]
  16. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsec absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011). [CrossRef]
  17. D. Duche, E. Drouard, J. J. Simon, L. Escoubas, P. Thorchio, J. Le Rouzo, and S. Vedraine, “Light harvesting in organic solar cells,” Sol. Energy Mater. Sol. Cells95, S18–S25 (2011). [CrossRef]
  18. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011). [CrossRef]
  19. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  21. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011). [CrossRef] [PubMed]
  22. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011). [CrossRef] [PubMed]
  23. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett.6(1), 549 (2011). [CrossRef] [PubMed]
  24. C. Caloz and T. Itoh, in Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (John Wiley and Sons, 2006).
  25. L. C. Trintinilia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antenn. Propag.52(9), 2253–2261 (2004). [CrossRef]
  26. S. Nosal, P. Soudais, and J. J. Greffet, “Integral Equation Modeling of doubly periodic Structures with an Efficient PMCHWT Formulation,” IEEE Trans. Antenn. Propag.60(1), 292–300 (2012). [CrossRef]
  27. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express21(7), 9144–9155 (2013). [CrossRef] [PubMed]
  28. R. Malureanu, M. Zalkovskij, Z. Song, C. Gritti, A. Andryieuski, Q. He, L. Zhou, P. U. Jepsen, and A. V. Lavrinenko, “A new method for obtaining transparent electrodes,” Opt. Express20(20), 22770–22782 (2012). [CrossRef] [PubMed]
  29. G. V. Eleftheriades, “EM transmission-line metamaterials,” Mater. Today12(3), 30–41 (2009). [CrossRef]
  30. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  31. H. Tao, M. Bingham, C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008). [CrossRef]
  32. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  33. S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol.14, 4219–4233 (1996).
  34. T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology7(4), 447–451 (1996). [CrossRef]
  35. P. St John and H. Graighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett.68(7), 1022–1024 (1996). [CrossRef]
  36. A. Taflove and S. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Artech House, 2000).
  37. E. D. Palik, in Handbook of Optical Constants 1 (Academic Press, 1985), pp. 555–568.
  38. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  39. F. I. Baïda and D. Van Labeke, “Light transmission by sub-wavelength annular aperture arrays in metallic films,” Opt. Commun.209(1-3), 17–22 (2002). [CrossRef]
  40. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons-an introduction,” Contemp. Phys.32(3), 173–183 (1991). [CrossRef]
  41. C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths,” Opt. Express15(15), 9320–9325 (2007). [CrossRef] [PubMed]
  42. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003). [CrossRef] [PubMed]
  43. G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, in Radar Cross Section (Handbook Plenum Press, 1970).
  44. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited