OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17028–17041

Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds

Sima Rekštytė, Mangirdas Malinauskas, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17028-17041 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Possibility to form three-dimensional (3D) micro-structures in silicone elastomer (polydimethylsiloxane; PDMS) doped with different photo-initiators was systematically investigated using direct laser writing with femtosecond laser pulses at different exposure conditions. Accuracy of the 3D structuring with resolution of ∼ 5 μm and a fabrication throughput of ∼720 μm3/s, which is exceeding the previously reported values by ∼ 300×, was achieved. Practical recording velocities of ∼ 1 mm/s were used in PDMS with isopropyl-9H-thioxanthen-9-one (ISO) and thioxanthen-9-one (THIO) photo-initiators which both have absorption at around 360 nm wavelength. The 3D laser fabrication in PDMS without any photo-initiator resulting in a fully bio-compatible material has been achieved for the first time. Rates of multi-photon absorption and avalanche for the structuring of silicone are revealed: the two-photon absorption is seeding the avalanche of a radical generation for subsequent cross-linking. Direct writing enables a maskless manufacturing of molds for soft-lithography and 3D components for microfluidics as well as scaffolds for grafts in biomedical applications.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials

ToC Category:
Laser Microfabrication

Original Manuscript: March 18, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 30, 2013
Published: July 10, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Sima Rekštytė, Mangirdas Malinauskas, and Saulius Juodkazis, "Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds," Opt. Express 21, 17028-17041 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006). [CrossRef]
  2. J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004). [CrossRef] [PubMed]
  3. T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002). [CrossRef] [PubMed]
  4. E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003). [CrossRef]
  5. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4, 031501 (2010). [CrossRef] [PubMed]
  6. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt.44, 3238–3245 (2005). [CrossRef] [PubMed]
  7. J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006). [CrossRef] [PubMed]
  8. B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004). [CrossRef]
  9. C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004). [CrossRef]
  10. T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).
  11. H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011). [CrossRef]
  12. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012). [CrossRef]
  13. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010). [CrossRef]
  14. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011). [CrossRef]
  15. S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011). [CrossRef] [PubMed]
  16. M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012). [CrossRef]
  17. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010). [CrossRef]
  18. J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011). [CrossRef]
  19. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010). [CrossRef]
  20. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003). [CrossRef]
  21. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010). [CrossRef]
  22. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010). [CrossRef]
  23. D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).
  24. C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006). [CrossRef] [PubMed]
  25. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013). [CrossRef]
  26. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010). [CrossRef]
  27. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006). [CrossRef] [PubMed]
  28. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006). [CrossRef]
  29. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010). [CrossRef]
  30. F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009). [CrossRef] [PubMed]
  31. 3DPoli@gmail.com.
  32. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010). [CrossRef]
  33. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008). [CrossRef] [PubMed]
  34. Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008). [CrossRef] [PubMed]
  35. K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009). [CrossRef] [PubMed]
  36. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008). [CrossRef]
  37. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007). [CrossRef]
  38. S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009). [CrossRef] [PubMed]
  39. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  40. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011). [CrossRef] [PubMed]
  41. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford Publishing, USA, 2011).
  42. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003). [CrossRef]
  43. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008). [CrossRef] [PubMed]
  44. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).
  45. S. Juodkazis, “Writing 3D patterns of microvessels,” Int. J. Nanomed.2012, 3701–3702 (2012). [CrossRef]
  46. C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited