OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17042–17052

High precision wavelength estimation method for integrated optics

R. M. Oldenbeuving, H. Song, G. Schitter, M. Verhaegen, E. J. Klein, C. J. Lee, H. L. Offerhaus, and K.-J. Boller  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17042-17052 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel and simple approach to optical wavelength measurement is presented in this paper. The working principle is demonstrated using a tunable waveguide micro ring resonator and single photodiode. The initial calibration is done with a set of known wavelengths and resonator tunings. The combined spectral sensitivity function of the resonator and photodiode at each tuning voltage was modeled by a neural network. For determining the unknown wavelengths, the resonator was tuned with a set of heating voltages and the corresponding photodiode signals were collected. The unknown wavelength was estimated, based on the collected photodiode signals, the calibrated neural networks, and an optimization algorithm. The wavelength estimate method provides a high spectral precision of about 8 pm (5·10−6 at 1550 nm) in the wavelength range between 1549 nm to 1553 nm. A higher precision of 5 pm (3·10−6) is achieved in the range between 1550.3 nm to 1550.8 nm, which is a factor of five improved compared to a simple lookup of data. The importance of our approach is that it strongly simplifies the optical system and enables optical integration. The approach is also of general importance, because it may be applicable to all wavelength monitoring devices which show an adjustable wavelength response.

© 2013 OSA

OCIS Codes
(120.4140) Instrumentation, measurement, and metrology : Monochromators
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Integrated Optics

Original Manuscript: April 11, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: June 3, 2013
Published: July 10, 2013

R. M. Oldenbeuving, H. Song, G. Schitter, M. Verhaegen, E. J. Klein, C. J. Lee, H. L. Offerhaus, and K.-J. Boller, "High precision wavelength estimation method for integrated optics," Opt. Express 21, 17042-17052 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett.23(7), 509–510 (1998). [CrossRef]
  2. N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide,” Opt. Express20(6), 6488–6495 (2012). [CrossRef] [PubMed]
  3. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B-Lasers O.81(6), 769–777 (2005). [CrossRef]
  4. I. Lindsay, B. Adhimoolam, P. Gross, M. Klein, and K. Boller, “110GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser,” Opt. Express13(4), 1234–1239 (2005). [CrossRef] [PubMed]
  5. J. B. Cooper, P. E. Flecher, S. Albin, T. M. Vess, and W. T. Welch, “Elimination of mode hopping and frequency hysteresis in diode laser raman spectroscopy: the advantages of a distributed bragg reflector diode laser for raman excitation,” Appl. Spectrosc.49, 1692–1698 (1995). [CrossRef]
  6. K. Richard, P. Manson, and P. Ewart, “A widely tunable, high power, single-mode laser for linear and nonlinear spectroscopy,” Meas. Sci. Tech.19, 015603 (2008). [CrossRef]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  8. A. Banerjee, U. D. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett.79, 2139–2141 (2001). [CrossRef]
  9. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett.31(12), 1785–1787 (2006). [CrossRef] [PubMed]
  10. P. Kiesel, O. Schmidt, S. Mohta, N. Johnson, and S. Malzer, “Compact, low-cost, and high-resolution interrogation unit for optical sensors,” Appl. Phys. Lett.89, 201113 (2006).
  11. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, C. Cuisin, E. Derouin, O. Drisse, G-H Duan, L. Legouézigou, O. Legouézigou, F. Pommereau, S. Golka, H. Heidrich, H. J. Hensel, and K. Janiak, “Compact wavelength monitoring by lateral outcoupling in wedged photonic crystal multimode waveguides,” Appl. Phys. Lett.86, 101107 (2005). [CrossRef]
  12. C. Sookdhis, T. Mei, H. S. Djie, and J. Arokiaraj, “Passive wavelength monitor based on multimode interference waveguide,” Opt. Eng.42(12), 3421–3422 (2003). [CrossRef]
  13. B. Mason, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonic. Tech. L.10(8), 1085–1087 (1998). [CrossRef]
  14. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box shaped dielectric waveguides: A new concept in integrated optics,” J. Lightwave Technol.25, 2579–2589 (2007). [CrossRef]
  15. J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B45, 658–666 (1992). [CrossRef]
  16. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett.37(16), 3384–3386 (2012). [CrossRef]
  17. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson, and A. Juditsky, “Non-linear black-box modeling in system identification: a unified overview,” Automatica31(12), 1691–1724 (1995). [CrossRef]
  18. R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Magazine4(2), 4–22 (1987). [CrossRef]
  19. S. Y. Kung, Digital Neural Networks (Prentice-Hall, 1993).
  20. S. Haykin, Neural Networks: a Comprehensive Foundation (Macmillan, 1994).
  21. H. Demuth, M. Beale, and M. Hagan, MATLAB Neural Network Toolbox 5 User’s Guide (The MathWorks, Inc., 2007).
  22. M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares Approach (Cambridge University, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited