OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17097–17107

Integrated polarization rotator/converter by stimulated Raman adiabatic passage

Xiao Xiong, Chang-Ling Zou, Xi-Feng Ren, and Guang-Can Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17097-17107 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: May 20, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 4, 2013
Published: July 10, 2013

Xiao Xiong, Chang-Ling Zou, Xi-Feng Ren, and Guang-Can Guo, "Integrated polarization rotator/converter by stimulated Raman adiabatic passage," Opt. Express 21, 17097-17107 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications1, 1 (2012). [CrossRef]
  2. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon.3, 687–695 (2009). [CrossRef]
  3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  4. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature434, 169–176 (2005). [CrossRef] [PubMed]
  5. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012). [CrossRef]
  6. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien, “Quantum walks of correlated photons,” Science329, 1500–1503 (2010). [CrossRef] [PubMed]
  7. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun.2, 566 (2011). [CrossRef] [PubMed]
  8. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012). [CrossRef] [PubMed]
  9. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photon.1, 57–60 (2007). [CrossRef]
  10. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam spiltter with surface plasmon,” Opt. Lett.36, 3630–3632 (2011). [CrossRef] [PubMed]
  11. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol.26, 1708–1714 (2008). [CrossRef]
  12. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett.37, 3711–3713 (2012). [CrossRef] [PubMed]
  13. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J.Opt. Soc. Am. B25, 747–753 (2008). [CrossRef]
  14. T. T. Cao, S. W. Chen, Y. H. Fei, L. B. Zhang, and Q. Y. Xu, “Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide,” Appl. Opt.52, 990–996 (2013). [CrossRef] [PubMed]
  15. Y. Yue, L. Zhang, M. P. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express17, 20694–20699 (2009). [CrossRef] [PubMed]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express16, 2628–2635 (2008). [CrossRef] [PubMed]
  17. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A23, 1741–1745 (2006). [CrossRef]
  18. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol.23, 432–445 (2005). [CrossRef]
  19. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J.3, 381–389 (2011). [CrossRef]
  20. A. V. Velasco, M. L. Calvo, P. Cheben, A. O. Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett.37, 365–367 (2012). [CrossRef] [PubMed]
  21. D. O. Dzibrou, J. van der Tol, and M. K. Smit, “Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits,” Opt. Lett.38, 1061–1063 (2013). [CrossRef] [PubMed]
  22. C. A. Ramos, S. R. Garcia, A. O. Monux, I. M. Fernandez, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett.37, 335–337 (2012). [CrossRef]
  23. Y. H. Ding, L. Liu, C. Peucheret, and H. Y. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express20, 20021–20027 (2012). [CrossRef] [PubMed]
  24. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30, 138–140 (2005). [CrossRef] [PubMed]
  25. J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. T. Varghese, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Efficient silicon-on-insulator polarization rotator based on mode evolution,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012), pp. JW4A.83.
  26. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36, 469–471 (2011). [CrossRef] [PubMed]
  27. N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett.32, 2131–2133 (2007). [CrossRef] [PubMed]
  28. J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16, 53–60 (2010). [CrossRef]
  29. H. J. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Y. Chen, H. F. Zhou, M. B. Yu, G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for efficient photonics,” Appl. Phys. Lett.101, 021105 (2012). [CrossRef]
  30. D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19, 10940–10949 (2011). [CrossRef] [PubMed]
  31. Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett.38, 1227–1229 (2013). [CrossRef] [PubMed]
  32. J. Zhang, S. Y. Zhu, H. J. Zhang, S. Y. Chen, G. Q. Lo, and D. L. Kwong, “An ultracompact surface plasmon polariton-effect-based polarization rotator,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011). [CrossRef]
  33. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J.4, 707–714 (2012). [CrossRef]
  34. J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett.37, 4615–4617 (2012). [CrossRef] [PubMed]
  35. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett.100, 041104 (2012). [CrossRef]
  36. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998). [CrossRef]
  37. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev.3, 243–261 (2009). [CrossRef]
  38. K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express20, 23108–23116 (2012). [CrossRef] [PubMed]
  39. C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Photonic bound state in the continuum for strong light-matter interaction,” arXiv: 1305.5297 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited