OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17161–17175

Portable, miniaturized, fibre delivered, multimodal CARS exoscope

Brett Smith, Majid Naji, Sangeeta Murugkar, Emilio Alarcon, Craig Brideau, Peter Stys, and Hanan Anis  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17161-17175 (2013)
http://dx.doi.org/10.1364/OE.21.017161


View Full Text Article

Enhanced HTML    Acrobat PDF (16531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time, a portable multimodal coherent anti-Stokes Raman scattering microscope (exoscope) for minimally invasive in-vivo imaging of tissues. This device is based around a micro-electromechanical system scanning mirror and miniaturized optics with light delivery accomplished by a photonic crystal fibre. A single Ti:sapphire femtosecond pulsed laser is used as the light source to produce CARS, two photon excitation fluorescence and second harmonic generation images. The high resolution and distortion-free images obtained from various resolution and bio-samples, particularly in backward direction (epi) successfully demonstrate proof of concept, and pave the path towards future non or minimally-invasive in vivo imaging.

© 2013 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 24, 2013
Manuscript Accepted: July 5, 2013
Published: July 11, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Brett Smith, Majid Naji, Sangeeta Murugkar, Emilio Alarcon, Craig Brideau, Peter Stys, and Hanan Anis, "Portable, miniaturized, fibre delivered, multimodal CARS exoscope," Opt. Express 21, 17161-17175 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef] [PubMed]
  2. T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9:42 (2009). BMC Cancer9(1), 42 (2009), doi:. [CrossRef]
  3. E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, “In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.78(23), 8036–8043 (2006). [CrossRef] [PubMed]
  4. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003). [CrossRef] [PubMed]
  5. Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  6. Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85(13), 2870–2881 (2007). [CrossRef] [PubMed]
  7. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt.11(5), 050502-1– 050502-3 (2006).
  8. +T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. of Biomedical Opt.12 (5), 054007–1–054007–10 (2007).
  9. Y. M. Wu, H. C. Chen, W. T. Chang, J. W. Jhan, H. L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy,” Anal. Chem.81(4), 1496–1504 (2009). [CrossRef] [PubMed]
  10. H. G. Breunig, M. Weinigel, R. Bückle, M. Kellner-Höfer, J. Lademann, M. E. Darvin, W. Sterry, and K. König, “Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber,” Laser Phys. Lett.10(2), 1–5 (2013). [CrossRef]
  11. A. Uchugonova, M. Lessel, S. Nietzsche, C. Zeitz, K. Jacobs, C. Lemke, and K. König, “Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses,” J. Biomed. Opt.17(10), 101502 (2012). [CrossRef] [PubMed]
  12. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009). [CrossRef] [PubMed]
  13. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001). [CrossRef] [PubMed]
  14. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008). [CrossRef] [PubMed]
  15. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  16. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009). [CrossRef] [PubMed]
  17. J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010). [CrossRef] [PubMed]
  18. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010). [CrossRef] [PubMed]
  19. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express14(10), 4427–4432 (2006). [CrossRef] [PubMed]
  20. F. Knorr, D. R. Yankelevich, J. Liu, S. Wachsmann-Hogiu, and L. Marcu, “Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy,” J Biophotonics5(1), 14–19 (2012). [CrossRef] [PubMed]
  21. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  22. M. Weinigel, H. G. Breunig, P. Fischer, M. Kellner-Höfer, R. Bückle, and K. König, “Compact clinical high-NA multiphoton endoscopy,” Proc. SPIE8217, 821706, 821706-8 (2012), doi:. [CrossRef]
  23. H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett.31(10), 1417–1419 (2006). [CrossRef] [PubMed]
  24. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010). [CrossRef] [PubMed]
  25. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids49(4), 969–984 (2010). [CrossRef]
  26. P. S. Hsu, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Single-shot thermometry using fiber-based picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy,” J. Raman Spectro. (2013). [CrossRef]
  27. Z. Wang, L. Gao, P. Luo, Y. Yang, A. A. Hammoudi, K. K. Wong, and S. T. C. Wong, “Use of multimode optical fibers for fiber-based coherent anti-Stokes Raman scattering microendoscopy imaging,” Opt. Express19(9), 7960–7970 (2011). [CrossRef] [PubMed]
  28. B. G. Saar, R. S. Johnston, C. W. Freudiger, X. S. Xie, and E. J. Seibel, “Coherent Raman scanning fiber endoscopy,” Opt. Lett.36(13), 2396–2398 (2011). [CrossRef] [PubMed]
  29. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express18(23), 23796–23804 (2010). [CrossRef] [PubMed]
  30. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express17(23), 20700–20706 (2009). [CrossRef] [PubMed]
  31. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007). [CrossRef] [PubMed]
  32. A. F. Pegoraro, A. D. Slepkov, A. Risdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophot. (2012). [CrossRef]
  33. K. J. Bock, H. E. Kotb, M. A. Abdelaim, and H. Anis, “Increasing energy in an ytterbium femtosecond fiber laser with a longer gain medium and lower doping,” Proc. SPIE8237, 823731-1–823731-7 (2012), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited