OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17212–17220

Fabrication tolerances of SOI based directional couplers and ring resonators

Andreas Prinzen, Michael Waldow, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17212-17220 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work the effect of deviations of the waveguide shape introduced by manufacturing tolerances on the performance of lateral directional couplers and ring resonators based on SOI-rib-waveguides are investigated by using Full Wave 3D Finite Element Method. Beside dimensional deviations like waveguide width and slab thickness for the first time the influence of waveguide sidewall angle and wet chemical cleaning procedures on the device performance are carefully analyzed. Efficient measures against systematic process tolerances are proposed and possible actions to improve device stability and reproducibility are discussed.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

Original Manuscript: March 29, 2013
Revised Manuscript: May 29, 2013
Manuscript Accepted: June 27, 2013
Published: July 11, 2013

Andreas Prinzen, Michael Waldow, and Heinrich Kurz, "Fabrication tolerances of SOI based directional couplers and ring resonators," Opt. Express 21, 17212-17220 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  2. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14467–14475 (2007). [CrossRef] [PubMed]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005). [CrossRef]
  4. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip of future generations of chip multi-processors,” IEEE Trans. Comput.57(9), 1246–1260 (2008). [CrossRef]
  5. B. A. Small, B. G. Lee, K. Bergman, Q. Xu, and M. Lipson, “Multiple-wavelength integrated photonic networks based on microring resonator devices,” J. Opt. Netw.6(2), 112–120 (2007). [CrossRef]
  6. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011). [CrossRef] [PubMed]
  7. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012). [CrossRef]
  8. T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012). [CrossRef]
  9. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861–2863 (2004). [CrossRef] [PubMed]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  11. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  13. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express16(1), 334–339 (2008). [CrossRef] [PubMed]
  14. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express14(22), 10838–10843 (2006). [CrossRef] [PubMed]
  15. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008). [CrossRef] [PubMed]
  16. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron.46(8), 1158–1169 (2010). [CrossRef]
  17. M. A. Popovic, T. Barwicz, E. P. Ippen, and F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Long Beach, CA, 21–26 May 2006, paper CTuCC1. [CrossRef]
  18. K. Xiong, X. Xiao, Y.-T. Hu, Z.-Y. Li, T. Chu, Y.-D. Yu, and J.-Z. Yu, “Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits,” Chin. Phys. B21(7), 074203 (2012). [CrossRef]
  19. Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express16(7), 4981–4990 (2008). [CrossRef] [PubMed]
  20. C. C. Welch, A. L. Goodyear, T. Wahlbrink, M. C. Lemme, and T. Mollenhauer, “Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas,” Microelectron. Eng.83(4-9), 1170–1173 (2006). [CrossRef]
  21. G. K. Celler, D. L. Barr, and J. M. Rosamilia, “Etching of silicon by the RCA standard clean 1,” Electrochem. Solid St.3(1), 47–49 (1999). [CrossRef]
  22. J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelectron. Eng.87(5-8), 1041–1043 (2010). [CrossRef]
  23. Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express20(26), B256–B263 (2012). [CrossRef] [PubMed]
  24. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005). [CrossRef]
  25. C. Su, H. Ke, and T. Hubing, “Overview of electromagnetic modeling software,” 25th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, 8–13 March 2009.
  26. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, 1st edn., Springer Series in Optical Sciences (Springer, London, 2008)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited