OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17221–17227

Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity

Ning Wang, Mohammad R. Hashemi, and Mona Jarrahi  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17221-17227 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photoconductive terahertz detector based on plasmonic contact electrodes is presented. The use of plasmonic electrodes mitigates the inherent tradeoff between high quantum efficiency and ultrafast operation of the employed photoconductor, enabling significantly higher detection sensitivities compared to conventional photoconductive terahertz detectors. Prototypes of comparable photoconductive detectors with and without plasmonic contact electrode gratings were fabricated and characterized in a time-domain terahertz spectroscopy setup under the same operation conditions. The experimental results show that the plasmonic photoconductive detector offers more than 30 times higher terahertz detection sensitivities compared to the comparable conventional photoconductive detector without plasmonic contact electrodes over 0.1-1.5 THz frequency band.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(350.2770) Other areas of optics : Gratings
(250.5403) Optoelectronics : Plasmonics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 30, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 5, 2013
Published: July 11, 2013

Ning Wang, Mohammad R. Hashemi, and Mona Jarrahi, "Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity," Opt. Express 21, 17221-17227 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron.24(2), 255–260 (1988). [CrossRef]
  2. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech.38(11), 1684–1691 (1990). [CrossRef]
  3. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett.73(4), 444–446 (1998). [CrossRef]
  4. F. G. Sun, G. A. Wagoner, and X.-C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime Photoconductors,” Appl. Phys. Lett.67(12), 1656–1658 (1995). [CrossRef]
  5. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett.88(25), 251119 (2006). [CrossRef]
  6. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 μm probe,” Appl. Phys. Lett.77(9), 1396–1398 (2000). [CrossRef]
  7. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett.83(7), 1322–1324 (2003). [CrossRef]
  8. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett.86(16), 163504 (2005). [CrossRef]
  9. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.91(1), 011102 (2007). [CrossRef]
  10. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S.-I. Nakashima, and C.-L. Pan, “Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas,” Opt. Express12(13), 2954–2959 (2004). [CrossRef] [PubMed]
  11. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett.86(25), 254102 (2005). [CrossRef]
  12. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett.91(8), 081109 (2007). [CrossRef]
  13. S. Liu, X. Shou, and A. Nahata, “Coherent Detection of Multiband Terahertz Radiation Using a Surface Plasmon-Polariton Based Photoconductive Antenna,” IEEE Trans. Terahertz Sci. Technol.1(2), 412–415 (2011). [CrossRef]
  14. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic Terahertz Photoconductive Switch on GaAs,” Nano Lett.12(12), 6255–6259 (2012). [CrossRef] [PubMed]
  15. M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol.13(11), 1739–1745 (2002). [CrossRef]
  16. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  17. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-Ray imaging,” IEEE J. Sel. Top. Quantum Electron.2(3), 679–692 (1996). [CrossRef]
  18. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol.47(21), 3797–3805 (2002). [CrossRef] [PubMed]
  19. D. D. Arnone, C. Ciesla, and M. Pepper, “Terahertz imaging comes into view,” Phys. World13, 35–40 (2000).
  20. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting--a review,” J. Pharm. Pharmacol.59(2), 209–223 (2007). [CrossRef] [PubMed]
  21. D. G. Rowe, “Terahertz takes to the stage,” Nat. Photonics1(2), 75–77 (2007). [CrossRef]
  22. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003). [CrossRef]
  23. S. Kono, M. Tani, and K. Sakai, “Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna,” IEE Proc. Optoelectronics 149, 105- 109 (2002). [CrossRef]
  24. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two Photomixers,” Appl. Phys. Lett.73(26), 3824–3826 (1998). [CrossRef]
  25. P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett.32(16), 2297–2299 (2007). [CrossRef] [PubMed]
  26. S. E. Ralph and D. Grischkowsky, “Trap‐enhanced electric fields in semi‐insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972 (1991). [CrossRef]
  27. C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Milli. Terahz. Waves33(12), 1182–1189 (2012). [CrossRef]
  28. J. Požela and A. Reklaitis, “Electron transport properties in GaAs at high electric fields,” Solid-State Electron.23(9), 927–933 (1980). [CrossRef]
  29. C. W. Berry and M. Jarrahi, “Plasmonically-enhanced localization of light into photoconductive antennas,” Proc. Conf. Lasers and Electro-Optics, CFI2 (2010). [CrossRef]
  30. C. W. Berry and M. Jarrahi, “Ultrafast Photoconductors based on Plasmonic Gratings,” Proc. Int. Conf. Infrared, Millimeter, and Terahertz Waves, 1–2 (2011).
  31. B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys.109(8), 084326 (2011). [CrossRef]
  32. C. W. Berry, J. Moore, and M. Jarrahi, “Design of Reconfigurable Metallic Slits for Terahertz Beam Modulation,” Opt. Express19(2), 1236–1245 (2011). [CrossRef] [PubMed]
  33. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express18(9), 9251–9257 (2010). [CrossRef] [PubMed]
  34. M. Jarrahi and T. H. Lee, “High power tunable terahertz generation based on photoconductive antenna arrays,” Proc. IEEE Int. Microwave Symposium, 391–394 (2008). [CrossRef]
  35. M. Jarrahi, “Terahertz radiation-band engineering through spatial beam-shaping,” IEEE Photon. Technol. Lett.21(13), 2019620 (2009). [CrossRef]
  36. T. Hattori, K. Egawa, S. I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys.45(15), L422–L424 (2006). [CrossRef]
  37. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005). [CrossRef]
  38. N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Milli. Terahz. Waves34, (2013), doi:. [CrossRef]
  39. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant Performance Enhancement in Photoconductive Terahertz Optoelectronics by Incorporating Plasmonic Contact Electrodes,” Nat Commun4, 1622 (2013). [CrossRef] [PubMed]
  40. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14(10), 105029 (2012). [CrossRef]
  41. C. W. Berry and M. Jarrahi, “Plasmonic Photoconductive Antennas for High Power Terahertz Generation,” Proc. IEEE Int. Antennas and Propagation Symposium, 1–2 (2012). [CrossRef]
  42. C. W. Berry and M. Jarrahi, “High-Performance Photoconductive Terahertz Sources Based on Nanoscale Contact Electrode Gratings,” Proc. IEEE Int. Microwave Symposium, 1–3, (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited