OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17265–17274

Generation of tunable three-dimensional polarization in 4Pi focusing system

Wenguo Zhu and Weilong She  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17265-17274 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that, by uniformly modulating the amplitude or polarization of one half of the input beam, a tunable three-dimensional (3D) polarization field near the focus of a 4Pi focusing system can be generated. If the input field is radially polarized and modulated by an amplitude-phase modulator, the longitudinal component of the focused field will partially convert to the transversal one according to the modulation factor and a 3D linear polarization state is created. If the input field is circularly polarized in one half and elliptically polarized in another half, the focal field will have elliptical polarization with the normal to the polarization ellipse being 3D controllable, corresponding to a 3D controllable spin angular momentum.

© 2013 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(180.6900) Microscopy : Three-dimensional microscopy
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: June 3, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 2, 2013
Published: July 11, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Wenguo Zhu and Weilong She, "Generation of tunable three-dimensional polarization in 4Pi focusing system," Opt. Express 21, 17265-17274 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  2. N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4π focusing of radially polarized light,” Opt. Lett.29(17), 1968–1970 (2004). [CrossRef] [PubMed]
  3. S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A9(12), 2159–2166 (1992). [CrossRef]
  4. Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett.37(8), 1286–1288 (2012). [CrossRef] [PubMed]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  6. J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt.14(5), 055004 (2012). [CrossRef]
  7. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett.85(21), 4482–4485 (2000). [CrossRef] [PubMed]
  8. X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012). [CrossRef] [PubMed]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser trapped microscopic particles,” Nature394(6691), 348–350 (1998). [CrossRef]
  10. A. Picón, A. Benseny, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Transferring orbital and spin angular momenta of light to atoms,” New J. Phys.12(8), 083053 (2010). [CrossRef]
  11. W. Zhu and W. She, “Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal,” Opt. Express20(23), 25876–25883 (2012). [CrossRef] [PubMed]
  12. M. Mansuripur, “Spin and orbital angular momenta of electromagnetic waves in free space,” Phys. Rev. A84(3), 033838 (2011). [CrossRef]
  13. A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett.96(15), 153901 (2006). [CrossRef] [PubMed]
  14. W. Chen and Q. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt.12(4), 045707 (2010). [CrossRef]
  15. W. Chen and Q. Zhan, “Three dimensional polarization control in 4Pi microscopy,” Opt. Commun.284(1), 52–56 (2011). [CrossRef]
  16. C.-F. Li, “Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization,” Phys. Rev. A80(6), 063814 (2009). [CrossRef]
  17. B. Richards and E. Wolf, “Electomagnetic diffraction in optical systems: Structure of the image field in an aplanatic system,” Proc. Roy. Soc. London Series A253(1274), 358–379 (1959). [CrossRef]
  18. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett.36(3), 352–354 (2011). [CrossRef] [PubMed]
  19. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999). [CrossRef]
  20. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A, Pure Appl. Opt.2(3), 216–222 (2000). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 6th edition, 1983).
  22. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett.99(7), 073901 (2007). [CrossRef] [PubMed]
  23. A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett.103(10), 100401 (2009). [CrossRef] [PubMed]
  24. H. Shpaisman, D. B. Ruffner, and D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett.102(7), 071103 (2013). [CrossRef]
  25. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001). [CrossRef]
  26. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011). [CrossRef]
  27. R. Zambrini and S. M. Barnett, “Local transfer of angular momentum to matter,” J. Mod. Opt.52, 1045–1052 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited