OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17324–17339

Controlling the optical properties of composite multilayered photonic structures: effect of superposition

Anupam Mukherjee, A. David Ariza-Flores, R. Fabiola Balderas-Valadez, and Vivechana Agarwal  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17324-17339 (2013)
http://dx.doi.org/10.1364/OE.21.017324


View Full Text Article

Enhanced HTML    Acrobat PDF (3889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunability of the optical response of multilayered photonic structures has been compared with sequential (SQ) and superposition (SP) addition of refractive index profile functions. The optical response of the composite multilayered structure, formed after the SP addition of the two Bragg type refractive index profile functions has been studied as a function of percentage overlap and relative shift between the profiles. Apart from the substantial advantage in terms of the reduced physical thickness of the SP composite structures (over the SQ addition), at certain optimum values of relative shift, photonic structures with better quality factor resonant modes or a broader PBG could be designed. Similar analysis has been extended for rugate filters as well. The experimental verification of the optical response, was carried out through multilayered dielectric porous silicon structures fabricated by electrochemical anodization.

© 2013 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.4040) Optical devices : Mirrors
(230.4170) Optical devices : Multilayers
(240.0310) Optics at surfaces : Thin films
(230.5298) Optical devices : Photonic crystals

ToC Category:
Thin Films

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: June 17, 2013
Published: July 12, 2013

Citation
Anupam Mukherjee, A. David Ariza-Flores, R. Fabiola Balderas-Valadez, and Vivechana Agarwal, "Controlling the optical properties of composite multilayered photonic structures: effect of superposition," Opt. Express 21, 17324-17339 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Malak, N. Gaber, F. Marty, N. Pavy, E. Richalo, and T. Bourouina, “Analysis of Fabry-Perot optical micro-cavities based on coating-free all-Silicon cylindrical Bragg reflectors,” Opt. Express21, 2378–2392 (2013). [CrossRef] [PubMed]
  2. D. Bria, B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, “Omnidirectional optical mirror in a cladded-superlattice structure,” J. Appl. Phys.91, 2569–2572 (2002). [CrossRef]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996). [CrossRef] [PubMed]
  4. D. E. Gray, American Institute of Physics Handbook (AIP, 1972).
  5. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14, 11318–11323 (2006). [CrossRef]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282, 1679–1682 (1998). [CrossRef] [PubMed]
  7. S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, “Dielectric SiO2/ZrO2distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method,” Appl. Phys. Lett.88, 161914 (2006). [CrossRef]
  8. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett.82, 004654 (2003). [CrossRef]
  9. K. Kojima, S. Noda, K. Mitsunaga, K. Kyuma, and K. Hamanaka, “Continuous wave operation of a surface emitting AlGaAs/GaAs multiquantum well distributed Bragg reflector laser,” Appl. Phys. Lett.50, 001705 (1987). [CrossRef]
  10. V. V. Medvedev, A. E. Yakshin, R. W. E. van de Kruijs, V. M. Krivtsun, A. M. Yakunin, K. N. Koshelev, and F. Bijkerk, “Infrared antireflective filtering for extreme ultraviolet multilayer Bragg reflectors,” Opt. Lett.37, 1169–1171 (2012). [CrossRef] [PubMed]
  11. V. Agarwal and J. A. del Río, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett.82, 001512 (2003). [CrossRef]
  12. P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett.81, 004895 (2002). [CrossRef]
  13. S. Ilyas, T. Bocking, K. Kilian, P.J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mat.29, 619–622 (2007). [CrossRef]
  14. D. Ariza-Flores, L. M. Gaggero-Sager, and V. Agarwal, “White metal-like omnidirectional mirror from porous silicon dielectric multilayers,” Appl. Phys. Lett.101, 031119 (2012). [CrossRef]
  15. P. Apiratikul, A. M. Rossi, and T. E. Murphy, “Nonlinearities in porous silicon optical waveguides at 1550 nm,” Opt. Express17, 3396–3406 (2009). [CrossRef] [PubMed]
  16. K. S. Pérez, J. O. Estevez, A. Méndez-Blas, J. Arriaga, G. Palestino, and M. E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett.7, 000392 (2012). [CrossRef]
  17. M. Y. Chen, S. O. Meade, and M. J. Sailor, “Preparation and analysis of porous silicon multilayers for spectral encoding applications,” Phys. Stat. Sol. (c)6, 1610–1614 (2009). [CrossRef]
  18. S. O. Meade and M. J. Sailor, “Microfabrication of freestanding porous silicon particles containing spectral barcodes,” Phys. Stat. Sol. (RRL)1, R71–R73 (2007). [CrossRef]
  19. L. Pavesi and R. Turan, Silicon Nanocrystals (WILEY-VCH, 2010).
  20. M. J. Sailor and S. O. Meade, Method for forming optically encoded thin films and particles with grey scale spectra. U.S. Patent #8,308, 066, (2012).
  21. C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett.67, 002983 (1995). [CrossRef]
  22. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999). [CrossRef]
  23. E. Xifré-Pérez, L. F. Marsal, J. Ferré-Borrull, and J. Pallarés, “Low refractive index contrast porous silicon omnidirectional reflectors,” Appl. Phys. B: Lasers and Opt.95, 169–172 (2009). [CrossRef]
  24. S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mat.16, 1811–1814 (2004). [CrossRef]
  25. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express17, 5446–5456 (2009). [CrossRef] [PubMed]
  26. S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2photonic crystal particles,” Anal. Chem.81, 2618–2625 (2009).
  27. S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nano. Res. Lett.7, 000079 (2012). [CrossRef]
  28. T. Jalkanen, J. Salonen, V. Torres-Costa, K. Fukami, T. Sakka, and Y. H. Ogata, “Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes,” Opt. Express19, 13291–13305 (2011). [CrossRef] [PubMed]
  29. E. Hecht, Optics (Addison-Wesley, 1998).
  30. J. O. Estevez, J. Arriaga, A. Méndez-Blas, and V. Agarwal, “Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index,” Appl. Phys. Lett.94, 061914 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited