OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17340–17351

X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer

J. Rizzi, P. Mercère, M. Idir, P. Da Silva, G. Vincent, and Jérôme Primot  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17340-17351 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present some quantitative measurements of X-ray phase contrast images and noise evaluation obtained with a recent grating based X-ray phase contrast interferometer. This device is built using a single phase grating and a large broadband X-ray source. It was calibrated using a reference sample and finally used to perform measurements of a biological fossil: a mosquito trapped in amber. As phase images, noise was evaluated from the measured interferograms.

© 2013 OSA

OCIS Codes
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging
(340.7450) X-ray optics : X-ray interferometry

ToC Category:
X-ray Optics

Original Manuscript: April 24, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 31, 2013
Published: July 12, 2013

J. Rizzi, P. Mercère, M. Idir, P. Da Silva, G. Vincent, and Jérôme Primot, "X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer," Opt. Express 21, 17340-17351 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Nomarski, “Nouveau dispositif pour l’observation en contraste de phase differentiel,” J.Phys.Radium16, S88–S88 (1955).
  2. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett6(8), 155–156 (1965). [CrossRef]
  3. R. Fitzgerald, “Phase sensitive X-ray imaging,” Phys. Today53, 23–26 (2000). [CrossRef]
  4. A. Momose, “Phase-sensitive imaging and phase tomography using X-ray interferometers,” Opt. Express11(19), 2303–2314 (2003). [CrossRef] [PubMed]
  5. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum66(12), 5486–5492 (1995). [CrossRef]
  6. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  7. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jap. Jour. Appl. Phys42(7B), 866–868 (2003). [CrossRef]
  8. A. Momose, “Recent advances in X-ray phase imaging,” Jap. Jour. Appl. Phys44(9A), 6355–6367 (2005). [CrossRef]
  9. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  10. H. F. Talbot, “Facts relating to optical science,” Phil. Mag. Series39, 401–407 (1836).
  11. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A72(1), 156–160 (1982). [CrossRef]
  12. Y. Takeda, W. Yashiro, T. Hattori, A. Takeuchi, Y. Suzuki, and A. Momose, “Differential phase X-ray imaging microscopy with Talbot interferometer,” Appl. Phys. Express1, 117002 (2008). [CrossRef]
  13. S. Ruthishauer, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength charcterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett99, 221104 (2011). [CrossRef]
  14. M. Creath, “Phase-Measurement Interferometry Techniques” (Elsevier Science, 1988) pp. 349–393.
  15. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express17(15), 12540–12545 (2009). [CrossRef] [PubMed]
  16. J. M. Kim, I. H. Cho, S. Y. Lee, H. C. Kang, R. Conley, C. Liu, A. T. Macrander, and D. Y. Noh, “Observation of the Talbot effect using broadband hard x-ray beam,” Opt. Express18(24), 24975–24982 (2010). [CrossRef] [PubMed]
  17. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brillance X-ray sources,” Nature Phys.2, 258–261 (2006). [CrossRef]
  18. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brillance sources,” Phys. Rev. Lett98, 108105 (2007). [CrossRef] [PubMed]
  19. J. Primot, “Three-wave lateral shearing interferometry,” Appl. Opt32(31), 6242–6249 (1993). [CrossRef] [PubMed]
  20. J. Primot and L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A12(12), 2679–2685 (1995). [CrossRef]
  21. A. Momose and S. Kawamoto, “X-ray Talbot interferometry with capillary plates,” Jap. Jour. Appl. Phys45(1A), 314–316 (2006). [CrossRef]
  22. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express15(3), 1175–1181 (2007). [CrossRef] [PubMed]
  23. H. Itoh, K. Nagai, G. sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase contrast imaging using Fourier transform phase retrieval,” Opt. Express19(4), 3339–3346 (2011). [CrossRef] [PubMed]
  24. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional X-ray grating interferometer,” Phys. Rev. Lett105, 248102 (2010). [CrossRef]
  25. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission grating,” Opt. Lett35(12), 1932–1934 (2010). [CrossRef] [PubMed]
  26. V. Revol, C. Kottler, R. Kaufmann, I. Jerjen, T. lüthi, F. Cardot, P. Niedermann, U. Straumann, U. Sennhauser, and C. Urban, “X-ray interferometer with bent grating: toward larger fields of view,” Nucl. Instr. Meth. Phys. Res. A648, 302–305 (2011). [CrossRef]
  27. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express19(20), 19781–19789 (2011). [CrossRef] [PubMed]
  28. J. Durnin, “Continuously self-imaging fields of finite aperture,” J. Opt. Soc. Am. A2, 110 (1985).
  29. N. Guérineau and J. Primot, “Non diffracting array generation using an N-wave interferometer,” J. Opt. Soc. Am. A16(2), 293–298 (1999). [CrossRef]
  30. M. Piponnier, G. Druart, N. Guérineau, J. L. de Bougrenet, and J. Primot, “Optimal conditions for using the binary approximation of continuously self-imaging gratings,” Opt. Express19(23), 23054–23066 (2011). [CrossRef] [PubMed]
  31. N. Guérineau, B. Harchaoui, and J. Primot, “Talbot experiment re-examined: demonstration of an achromatic and continuous self-imaging regime,” Opt. Com180, 199–203 (2000). [CrossRef]
  32. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett15(5), 288–290 (1990). [CrossRef] [PubMed]
  33. P. Cloetens, J. P. Guigay, C. De Martino, and J. Baruchel, “fractionnal Talbot imaging of phase gratings with hard x rays,” Opt. Lett22(14), 1059–1061 (1997). [CrossRef] [PubMed]
  34. J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudo-giuding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt39(31), 5715–5720 (2000). [CrossRef]
  35. J. Rizzi, T. Weitkamp, N. Guérineau, M. Idir, P. Mercère, G. Druart, G. Vincent, P. Da Silva, and J. Primot, “Quadriwave lateral shearing interferometry in an achromatic and continuously self-imaging regime for future x-ray phase imaging,” Opt. Lett36(8), 1398–1400 (2011). [CrossRef] [PubMed]
  36. T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brillance sources,” Proc. of SPIE631863180S (2006). [CrossRef]
  37. X. Ge, Z. Wang, K. Gao, K. Zhang, Y. Hong, D. Wang, Z. Zhu, P. Zhu, and Z. Wu, “Inverstigation of the partially coherent effects in a 2D Talbot interferometer,” Anal. Bioanal. Chem401, 865–870 (2011). [CrossRef] [PubMed]
  38. N. Guérineau, B. Harchaoui, K. Heggarty, and J. Primot, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. lett26(7), 411–413 (2001). [CrossRef]
  39. A. A. Michelson, Studies in Optics (University of Chicago Press, Chicago, 1927).
  40. P. Bon, S. Monneret, and B. Wattelier, “Noninterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt51(23), 5698–5704 (2012). [CrossRef] [PubMed]
  41. D. Ghilia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998) pp. 34.
  42. J. Rizzi, P. Mercre, M. Idir, N. Gurineau, E. Sakat, R. Hadar, G. Vincent, P. Da Silva, and J. Primot, “X-ray phase contrast imaging using a broadband X-ray beam and a single phase grating used in its achromatic and propagation-invariant regime,” J. Phys.: Conf. Ser.425,192002 (2013). [CrossRef]
  43. R. C. Jennison, “A phase sensitive interferometer technique for the measurement of the Fourier Transfoms of spatial brightness distributions of small angular extent,” Mon. Not. Roy. Astron. Soc.118(3), 276–284(1958).
  44. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. A67(3), 370–375 (1977). [CrossRef]
  45. W. H. Southwell, “Wavefront estimation from wavefront slope measurements,” J. Opt. Soc. Am. A70(8), 998–1006 (1980). [CrossRef]
  46. K. R. Freischlad and C. L. Koliopoulos, “Wavefront estimation from wavefront slope measurements,” J. Opt. Soc. Am. A3(11), 1852–1861 (1986). [CrossRef]
  47. S. Velghe, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett30(3), 245–247 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited