OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17392–17403

Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule

Yanchao She, Xuejun Zheng, Denglong Wang, and Weixi Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17392-17403 (2013)
http://dx.doi.org/10.1364/OE.21.017392


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the coupling effect between interdot tunneling coupling and external optical control field to study the linear optical property and the formation of temporal optical solitons in a quantum dot molecules system, analytically. The results show that the double tunneling induced transparency (TIT) windows are appeared in the absorption curve of probe field because of the formation of dynamic Stark splitting and quantum destructive interference effect from the two upper levels. Interestingly, the width of the TIT window becomes wider with the increasing intensity of the optical control field. We also find that the Kerr nonlinear effect of the probe field can be modulated effectively through coherent control both the control field and the interdot tunneling coupling in this system. Meanwhile, we demonstrate that the formation of dark or bright solitons can be practical regulated by varying the intensity of the optical control field.

© 2013 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(270.5585) Quantum optics : Quantum information and processing
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 22, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 4, 2013
Published: July 12, 2013

Citation
Yanchao She, Xuejun Zheng, Denglong Wang, and Weixi Zhang, "Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule," Opt. Express 21, 17392-17403 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern1, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science291(5503), 451–453 (2001). [CrossRef] [PubMed]
  2. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, 2008). [CrossRef]
  3. N. Tate, M. Naruse, W. Nomura, T. Kawazoe, T. Yatsui, M. Hoga, Y. Ohyagi, Y. Sekine, H. Fujita, and M. Ohtsu, “Demonstration of modulatable optical near-field interactions between dispersed resonant quantum dots,” Opt. Express19(19), 18260–18271 (2011). [CrossRef] [PubMed]
  4. W. Yang and R. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express16(22), 17161–17170 (2008). [CrossRef] [PubMed]
  5. K. Kobayashi, S. Sangu, T. Kawazoe, and M. Ohtsu, “Exciton dynamics and logic operations in a near-field optically coupled quantum-dot system,” J. Lumin.112, 117–121 (2005). [CrossRef]
  6. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: application of dressed photons to novel photonic devices and systems,” IEEE J. Sel. Top. Quantum Electron.14(6), 1404–1417 (2008). [CrossRef]
  7. C. J. Chang-Hasnain, P. C Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructure,” Proc. of IEEE91(11), 1884–1897 (2003). [CrossRef]
  8. P. Kaer Nielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express15(10), 6396–6408 (2007). [CrossRef] [PubMed]
  9. S. Marcinkevicius, A. Gushterov, and J. P. Reithmaier, “Transient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett.92(4), 041113(1–3) (2008). [CrossRef]
  10. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science301(5634), 809–811 (2003). [CrossRef] [PubMed]
  11. P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi, “Tunable slow light device using quantum dot semiconductor laser,” Opt. Express14(26), 12880–12886 (2006). [CrossRef] [PubMed]
  12. H. Su and S. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett.31(2), 271–273 (2006). [CrossRef] [PubMed]
  13. W. Yang and R. Lee, “Slow optical solitons via intersubband transitions in a semiconductor quantum well,” Europhys. Lett.83(1), 14002(1–6) (2008). [CrossRef]
  14. W. Yang, A. Chen, R. Lee, and Y Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A84(1), 013835(1–11) (2011). [CrossRef]
  15. K. Mller, A. Bechtold, C. Ruppert, M. Zecherle, G. Reithmaier, M. Bichler, H. J. Krenner, G. Abstreiter, A. W. Holleitner, J. M. Villas-Bôas, M. Betz, and J. J. Finley, “Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure,” Phys. Rev. Lett.108(19), 197402(1–4) (2012).
  16. V. V. Nikolaev, N. S. Averkiev, M. M. Sobolev, I. M. Gadzhiyev, I. O. Bakshaev, M. S. Buyalo, and E. L. Portnoi, “Tunnel coupling in an ensemble of vertically aligned quantum dot at room temperature,” Phys. Rev. B80(20), 205304 (2009). [CrossRef]
  17. H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B85(11), 115425 (2012). [CrossRef]
  18. R. Songmuang, S. Kiravittaya, and O. G. Schmidt, “Formation of lateral quantum dot molecules around self-assembled nanoholes,” Appl. Phys. Lett.82(17), 2892(1–3) (2003). [CrossRef]
  19. C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett.89(5), 052115 (1–3) (2006). [CrossRef]
  20. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett.96(13), 137401(1–4) (2006). [CrossRef]
  21. B. Krause, T. H. Metzger, A Rastelli, R. Songmuang, S. Kiravittaya, and O. G. Schmidt, “Shape, strain, and ordering of lateral InAs quantum dot molecules,” Phys. Rev. B72(8), 085339(1–12) (2005). [CrossRef]
  22. X. Hao, J. Wu, and Y Wang, “Steady-state absorptionCdispersion properties and four-wave mixing process in a quantum dot nanostructure,” J. Opt. Soc. Am. B29(3), 420–428 (2012). [CrossRef]
  23. P. Borri, W. Langbein, U. Woggon, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, and P. Hawrylak, “Exciton dephasing in quantum dot molecules,” Phys. Rev. Lett.91(26), 267401(1–4) (2003). [CrossRef]
  24. R. Espiau de Lamaëstre and H. Bernas1, “Significance of lognormal nanocrystal size distributions,” Phys. Rev. B73(12), 125317(1–18) (2006). [CrossRef]
  25. C. Hang and G. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express18(3), 2952–2966 (2010). [CrossRef] [PubMed]
  26. C. Zhu and G. Huang, “Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures,” Opt. Express19(23), 23364–23376 (2011). [CrossRef] [PubMed]
  27. Y. She, D. Wang, W. Zhang, Z. He, and J. Ding, “Formation and interaction characteristics of two-component spatial weak-light soliton in a four-level double- type system,” J. Opt. Soc. Am. B27(2), 208–214 (2010). [CrossRef]
  28. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  29. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003). [CrossRef]
  30. H. Zhang, D. Tang, L. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B80(5), 052302(1–4) (2009).
  31. H. Zhang, D. Tang, L. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80(4), 045803(1–4) (2009). [CrossRef]
  32. H. Sun, S. Fan, X. Feng, C. Wu, S. Gong, G. Huang, and C. H. Oh, “Strongly interacting photons in asymmetric quantum well via resonant tunneling,” Opt. Express20(8), 8485–8495 (2012). [CrossRef] [PubMed]
  33. Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A84(2), 023814(1–6) (2011) [CrossRef]
  34. H. Zhang, D. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express19(4), 3525–3530 (2011). [CrossRef] [PubMed]
  35. H. Zhang, D. Tang, L. Zhao, and R. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express18(5), 4428–4433 (2010). [CrossRef] [PubMed]
  36. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2009).
  37. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett.29(17), 2064–2066 (2004). [CrossRef] [PubMed]
  38. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited