OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17568–17575

Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region

Ziyu Chen, Hongwei Dai, Jiaming Liu, Hui Xu, Zixuan Li, Zhang-Kai Zhou, and Jun-Bo Han  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17568-17575 (2013)
http://dx.doi.org/10.1364/OE.21.017568


View Full Text Article

Acrobat PDF (2082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Au triangular nanoprisms with strong dipole plasmon absorption peak at 1240 nm were prepared by wet chemical methods. Both numerical calculations and experiments were carried out to investigate the optical properties of the samples. Finite difference time domain (FDTD) and Local Density of States (LDOS) calculations demonstrate that strong electric field enhancement and large LDOS can be obtained at tip areas of the Au triangular nanoprisms. Z scan techniques were used to characterize the nonlinear absorption, nonlinear refraction, as well as one- and two-photon figures of merit (W and T, respectively) of the sample. The results show that maximum nonlinear refractive index can be obtained around the resonance absorption wavelength of 1240 nm, detuning the wavelength from the absorption peak will lead to the decrease of the nonlinear refractive index n2, while the nonlinear absorption coefficient β doesn’t change much with the wavelength. This large wavelength dependence of n2 and small change of β enable the sample to satisfy the all-optical switching demand of W> 1 and T< 1 easily in a large wavelength range of 1200-1300 nm. These significant nonlinear properties of the sample imply that Au triangular nanoprism is a good candidate for future optical switches in infrared optical communication wavelength region.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 29, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 25, 2013
Published: July 16, 2013

Citation
Ziyu Chen, Hongwei Dai, Jiaming Liu, Hui Xu, Zixuan Li, Zhang-Kai Zhou, and Jun-Bo Han, "Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region," Opt. Express 21, 17568-17575 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17568


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  2. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011). [CrossRef] [PubMed]
  3. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun3, 1108 (2012). [CrossRef] [PubMed]
  4. H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013). [CrossRef] [PubMed]
  5. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett.7(3), 723–728 (2007). [CrossRef] [PubMed]
  6. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  7. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  8. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano4(9), 5003–5010 (2010). [CrossRef] [PubMed]
  9. V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011). [CrossRef] [PubMed]
  10. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  11. Z. K. Zhou, X. R. Su, X. N. Peng, and L. Zhou, “Sublinear and superlinear photoluminescence from Nd doped anodic aluminum oxide templates loaded with Ag nanowires,” Opt. Express16(22), 18028–18033 (2008). [CrossRef] [PubMed]
  12. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  13. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  14. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012). [CrossRef] [PubMed]
  15. H. M. K. Wong and A. S. Helmy, “Optically defined plasmonic waveguides in crystalline semiconductors at optical frequencies,” J. Opt. Soc. Am. B30(4), 1000–1007 (2013). [CrossRef]
  16. C. Lin and A. S. Helmy, “Analytical model for metal-insulator-metal mesh waveguide architectures,” J. Opt. Soc. Am. B29(11), 3157–3169 (2012). [CrossRef]
  17. B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Opt. Express18(26), 27048–27059 (2010). [CrossRef] [PubMed]
  18. J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett.10(3), 902–907 (2010). [CrossRef] [PubMed]
  19. R. C. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003). [CrossRef] [PubMed]
  20. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2(4), 230–233 (2008). [CrossRef]
  21. Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express21(2), 1898–1910 (2013). [CrossRef] [PubMed]
  22. D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett.10(8), 3129–3134 (2010). [CrossRef] [PubMed]
  23. Z. Y. Fang, L. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett.11(4), 1676–1680 (2011). [CrossRef] [PubMed]
  24. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011). [CrossRef] [PubMed]
  26. H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett.88(22), 223106 (2006). [CrossRef]
  27. U. Keibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  28. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater.16(18), 2405–2408 (2006). [CrossRef]
  29. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99(18), 181106 (2011). [CrossRef]
  30. M. R. Singh, C. Racknor, and D. Schindel, “Controlling the photoluminescence of acceptor and donor quantum dots embedded in a nonlinear photonic crystal,” Appl. Phys. Lett.101(5), 051115 (2012). [CrossRef]
  31. S. M. Sadeghi, A. Hatef, S. Fortin-Deschenes, and M. Meunier, “Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules,” Nanotechnology24(20), 205201 (2013). [CrossRef] [PubMed]
  32. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  33. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  34. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express17(9), 7206–7216 (2009). [CrossRef] [PubMed]
  35. H. W. Ren, S. Xu, Y. F. Liu, and S. T. Wu, “Liquid-based infrared optical switch,” Appl. Phys. Lett.101(4), 041104 (2012). [CrossRef]
  36. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc.127(15), 5312–5313 (2005). [CrossRef] [PubMed]
  37. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  38. W. Z. Chen, A. Kirilyuk, A. Kimel, and T. Rasing, “Direct mapping of plasmonic coupling between a triangular gold island pair,” Appl. Phys. Lett.100(16), 163111 (2012). [CrossRef]
  39. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockel-Lelièvre, A. Baudrion, P. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012). [CrossRef]
  40. P. Das, T. K. Chini, and J. Pond, “Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with FDTD simulations,” J. Phys. Chem. C116(29), 15610–15619 (2012). [CrossRef]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press 2006).
  42. S. Kéna-Cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. C. Bradley, A. Horsfield, and S. A. Maier, “Plasmonic sinks for the selective removal of long-lived states,” ACS Nano5(12), 9958–9965 (2011). [CrossRef] [PubMed]
  43. J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys.99(2), 023526 (2006). [CrossRef]
  44. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  45. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites,” J. Opt. Soc. Am. B20(6), 1227 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited