OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17695–17700

Anomalous laser-induced group velocity dispersion in fused silica

Gennady Rasskazov, Anton Ryabtsev, Dmitry Pestov, Bai Nie, Vadim V. Lozovoy, and Marcos Dantus  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17695-17700 (2013)
http://dx.doi.org/10.1364/OE.21.017695


View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present 20fs2 accuracy laser-induced group velocity dispersion (LI-GVD) measurements, resulting from propagation of a femtosecond laser pulse in 1mm of fused silica, as a function of peak intensity. For a 5.5 × 1011 W/cm2 peak intensity, LI-GVD values are found to vary from −3 to + 15 times the material GVD. Normal induced dispersion can be explained by the Kerr effect, but anomalous LI-GVD, found when the input pulses have negative pre-chirp, cannot. These findings have significant implications regarding self-compression and the design of femtosecond lasers.

© 2013 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(160.6030) Materials : Silica
(190.3270) Nonlinear optics : Kerr effect
(190.7220) Nonlinear optics : Upconversion
(260.2030) Physical optics : Dispersion
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 22, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: June 30, 2013
Published: July 17, 2013

Citation
Gennady Rasskazov, Anton Ryabtsev, Dmitry Pestov, Bai Nie, Vadim V. Lozovoy, and Marcos Dantus, "Anomalous laser-induced group velocity dispersion in fused silica," Opt. Express 21, 17695-17700 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett.19(19), 1097–1100 (1967). [CrossRef]
  2. S. S. Mao, F. Quéré, S. Guizard, X. L. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004). [CrossRef]
  3. P. Audebert, Ph. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2.,” Phys. Rev. Lett.73(14), 1990–1993 (1994).
  4. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B81(21), 212301 (2010). [CrossRef]
  5. C. Itoh, K. Tanimura, and N. Itoh, “Optical studies of self-trapped excitons in SiO2,” J. Phys. C Solid State Phys.21(26), 4693–4702 (1988). [CrossRef]
  6. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys. 109, 023503 (2011).
  7. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  8. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett.87(21), 213902 (2001). [CrossRef] [PubMed]
  9. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser- induced Kerr responses in liquid CS2,” J. Phys. Chem.91(8), 2028–2030 (1987). [CrossRef]
  10. W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett.136(3-4), 323–328 (1987). [CrossRef]
  11. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  12. R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, “Phase modulation of ultrashort light pulses using molecular rotational wave packets,” Phys. Rev. Lett.88(1), 013903 (2001). [CrossRef] [PubMed]
  13. L. Bergé, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett.101(21), 213901 (2008). [CrossRef] [PubMed]
  14. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2(1-2), 58–73 (2008). [CrossRef]
  15. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.- Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25(6), A140–A150 (2008). [CrossRef]
  16. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003). [CrossRef]
  17. D. Pestov, G. Rasskazov, A. Ryabtsev, I. Pastirk, and M. Dantus, “Shaper-based approach to real-time correction of ultrashort pulse phase drifts and transient pulse dispersion measurements,” EPJ Web of Conferences 41, 11007 (2013). [CrossRef]
  18. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett.21(22), 1812–1814 (1996). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics Third Edition (Academic, University of Rochester, 2001).Chap. 2.
  20. S. Smolorz and F. Wise, “Femtosecond two-beam coupling energy transfer from Raman and electronic nonlinearities,” J. Opt. Soc. Am. B17(9), 1636–1644 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited