OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18011–18020

Increasing the darkfield contrast-to-noise ratio using a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging

Thomas Weber, Georg Pelzer, Florian Bayer, Florian Horn, Jens Rieger, André Ritter, Andrea Zang, Jürgen Durst, Gisela Anton, and Thilo Michel  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18011-18020 (2013)
http://dx.doi.org/10.1364/OE.21.018011


View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel information retrieval algorithm for X-ray grating-based phase-contrast imaging based on the deconvolution of the object and the reference phase stepping curve (PSC) as proposed by Modregger et al. was investigated in this paper. We applied the method for the first time on data obtained with a polychromatic spectrum and compared the results to those, received by applying the commonly used method, based on a Fourier analysis. We confirmed the expectation, that both methods deliver the same results for the absorption and the differential phase image. For the darkfield image, a mean contrast-to-noise ratio (CNR) increase by a factor of 1.17 using the new method was found. Furthermore, the dose saving potential was estimated for the deconvolution method experimentally. It is found, that for the conventional method a dose which is higher by a factor of 1.66 is needed to obtain a similar CNR value compared to the novel method. A further analysis of the data revealed, that the improvement in CNR and dose efficiency is due to the superior background noise properties of the deconvolution method, but at the cost of comparability between measurements at different applied dose values, as the mean value becomes dependent on the photon statistics used.

© 2013 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.6760) Imaging systems : Talbot and self-imaging effects
(170.7440) Medical optics and biotechnology : X-ray imaging
(340.7450) X-ray optics : X-ray interferometry
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Image Processing

History
Original Manuscript: April 25, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 3, 2013
Published: July 19, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Thomas Weber, Georg Pelzer, Florian Bayer, Florian Horn, Jens Rieger, André Ritter, Andrea Zang, Jürgen Durst, Gisela Anton, and Thilo Michel, "Increasing the darkfield contrast-to-noise ratio using a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging," Opt. Express 21, 18011-18020 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett.81, 3287–3289 (2002). [CrossRef]
  2. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray talbot interferometry,” Jpn. J. Appl. Phys.42, L866–L868 (2003). [CrossRef]
  3. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-xray dark-field imaging using a grating interferometer,” Nature Mater.7, 134–137 (2008). [CrossRef]
  4. M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. a. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol.46, 801–806 (2011). [CrossRef] [PubMed]
  5. S. Schleede, F. G. Meinel, M. Bech, J. Herzen, K. Achterhold, G. Potdevin, A. Malecki, S. Adam-Neumair, S. F. Thieme, F. Bamberg, K. Nikolaou, A. Bohla, A. Ö. Yildirim, R. Loewen, M. Gifford, R. Ruth, O. Eickelberg, M. Reiser, and F. Pfeiffer, “Emphysema diagnosis using x-ray dark-field imaging at a laser-driven compact synchrotron light source,” Proc. Natl. Acad. Sci. USA109, 17880–17885 (2012). [CrossRef] [PubMed]
  6. J. Tanaka, M. Nagashima, K. Kido, Y. Hoshino, J. Kiyohara, C. Makifuchi, S. Nishino, S. Nagatsuka, and A. Momose, “Cadaveric and in vivo human joint imaging based on differential phase contrast by x-ray talbot-lau interferometry,” Zeitschrift für Medizinische Physik (2012). [CrossRef]
  7. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys.2, 258–261 (2006). [CrossRef]
  8. G. Anton, F. Bayer, M. W. Beckmann, J. Durst, P. A. Fasching, W. Haas, A. Hartmann, T. Michel, G. Pelzer, M. Radicke, C. Rauh, J. Rieger, A. Ritter, R. Schulz-Wendtland, M. Uder, D. L. Wachter, T. Weber, E. Wenkel, and L. Wucherer, “Grating-based darkfield imaging of human breast tissue,” Zeitschrift für Medizinische Physik (2013). [CrossRef]
  9. T. Michel, J. Rieger, G. Anton, F. Bayer, M. W. Beckmann, J. Durst, P. A. Fasching, J. Freudenberger, W. Haas, A. Hartmann, A. Magerl, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. L. Wachter, T. Weber, M. Weisser, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol.58, 2713–2732 (2013). [CrossRef] [PubMed]
  10. P. Modregger, F. Scattarella, B. R. Pinzer, C. David, R. Bellotti, and M. Stampanoni, “Imaging the ultrasmall-angle x-ray scattering distribution with grating interferometry,” Phys. Rev. Lett.108, 048101 (2012). [CrossRef] [PubMed]
  11. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13, 6296–304 (2005). [CrossRef] [PubMed]
  12. Z.-T. Wang, K.-J. Kang, Z.-F. Huang, and Z.-Q. Chen, “Quantitative grating-based x-ray dark-field computed tomography,” Appl. Phys. Lett.95, 094105 (2009). [CrossRef]
  13. MATLAB, “Version 7.12.0.635 (R2011a),” (2011).
  14. M. K. Singh, U. S. Tiwary, and Y.-H. Kim, “An adaptively accelerated lucy-richardson method for image deblur-ring,” EURASIP J. Adv. Sig. Process.2008(2008).
  15. F. Scattarella, S. Tangaro, P. Modregger, M. Stampanoni, L. D. Caro, and R. Bellotti, “Post-detection analysis for grating-based ultra-small angle x-ray scattering,” Physica Medica (2013). [CrossRef] [PubMed]
  16. T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38, 4133–4140 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited