OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18249–18254

Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases

Y. Nomura, Y.-T. Wang, T. Kozai, H. Shirai, A. Yabushita, C.-W. Luo, S. Nakanishi, and T. Fuji  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18249-18254 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-shot detection of ultrabroadband mid-infrared spectra was demonstrated by using chirped-pulse upconversion technique with four-wave difference frequency generation in gases. Thanks to the low dispersion of the gas media, the bandwidth of the phase matching condition of the upconversion process becomes very broad and the entire mid-infrared spectrum spanning from 200 to 5500 cm−1 was upconverted by using a 10 ps chirped pulse to visible wavelength radiation, which was detected with a conventional visible dispersive spectrometer. This method was demonstrated by the successful measurement of infrared absorption spectra of organic polymer films.

© 2013 osa

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: June 7, 2013
Revised Manuscript: July 13, 2013
Manuscript Accepted: July 14, 2013
Published: July 23, 2013

Y. Nomura, Y.-T. Wang, T. Kozai, H. Shirai, A. Yabushita, C.-W. Luo, S. Nakanishi, and T. Fuji, "Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases," Opt. Express 21, 18249-18254 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics6, 440–449 (2012). [CrossRef]
  2. H. J. Bakker and J. L. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics in liquid water,” Chem. Rev.110, 1498–1517 (2010). [CrossRef]
  3. A. Barth, “Infrared spectroscopy of proteins,” Biochem. Biophys. Acta1767, 1073–1101 (2007). [CrossRef] [PubMed]
  4. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007). [CrossRef] [PubMed]
  5. F. Théberge, M. Châteauneuf, G. Roy, P. Mathieu, and J. Dubois, “Generation of tunable and broadband far-infrared laser pulses during two-color filamentation,” Phys. Rev. A81, 033821 (2010). [CrossRef]
  6. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010). [CrossRef] [PubMed]
  7. M. D. Thomson, V. Blank, and H. G. Roskos, “Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields,” Opt. Express18, 23173–23182 (2010). [CrossRef] [PubMed]
  8. P. Lassonde, F. Théberge, S. Payeur, M. Châteauneuf, J. Dubois, and J. C. Kieffer, “Infrared generation by filamentation in air of a spectrally shaped laser beam,” Opt. Express19, 14093–14098 (2011). [CrossRef] [PubMed]
  9. M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37, 1787–1789 (2012). [CrossRef] [PubMed]
  10. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable subcycle mid-infrared conical emission from filamentation in gases,” Opt. Express20, 24741–24747 (2012). [CrossRef] [PubMed]
  11. T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci.3, 122–138 (2013). [CrossRef]
  12. C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37, 2265–2267 (2012). [CrossRef] [PubMed]
  13. M. Cho, Two-Dimensional Optical Spectroscopy(CRC Press, Boca Raton, 2009). [CrossRef]
  14. E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett.14, 551–553 (1989). [CrossRef] [PubMed]
  15. T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett.19, 129–131 (1994). [CrossRef] [PubMed]
  16. M. F. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett.30, 1818–1820 (2005). [CrossRef] [PubMed]
  17. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett.30, 1228–1230 (2005). [CrossRef] [PubMed]
  18. C. R. Baiz and K. J. Kubarych, “Ultrabroadband detection of a mid-IR continuum by chirped-pulse upconversion,” Opt. Lett.36, 187–189 (2011). [CrossRef] [PubMed]
  19. J. Zhu, T. Mathes, A. D. Stahl, J. T. M. Kennis, and M. L. Groot, “Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000cm−1region,” Opt. Express20, 10562–10571 (2012). [CrossRef] [PubMed]
  20. S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B206, 119–124 (1998). [CrossRef]
  21. G. C. Bjorklund, “Effects of focusing on 3rd-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron.11, 287–296 (1975). [CrossRef]
  22. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express17, 18738–18744 (2009). [CrossRef]
  23. N. J. Harrick, Internal Reflection Spectroscopy(Wiley, New York, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited