OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18304–18310

Effects of polarization and apodization on laser induced optical breakdown threshold

Babu Varghese, Simona Turco, Valentina Bonito, and Rieko Verhagen  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18304-18310 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the influence of polarization and apodization on laser induced optical breakdown threshold in transparent and diffuse media using linearly and radially polarized light. We demonstrate a lower irradiance threshold for optical breakdown using radially polarized light. The dominance of radial polarization in higher-order multiphoton ionization has important medical applications where a lower irradiance threshold may allow reaching deeper layers inside the skin with less risk of collateral damage and thereby improving safety and efficacy of treatment.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Nonlinear Optics

Original Manuscript: July 11, 2013
Manuscript Accepted: July 15, 2013
Published: July 23, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Babu Varghese, Simona Turco, Valentina Bonito, and Rieko Verhagen, "Effects of polarization and apodization on laser induced optical breakdown threshold," Opt. Express 21, 18304-18310 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996). [CrossRef]
  2. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997). [CrossRef]
  3. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999). [CrossRef]
  4. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008). [CrossRef] [PubMed]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  6. S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972). [CrossRef]
  7. H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972). [CrossRef]
  8. P. Lambropoulos, “Effect of light polarization on multiphoton ionization of atoms,” Phys. Rev. Lett.28(10), 585–587 (1972). [CrossRef]
  9. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006). [CrossRef] [PubMed]
  10. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003). [CrossRef] [PubMed]
  11. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  13. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  14. Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999). [CrossRef]
  15. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett.33(2), 122–124 (2008). [CrossRef] [PubMed]
  16. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000). [CrossRef]
  17. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express16(7), 4567–4581 (2008). [CrossRef] [PubMed]
  18. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010). [CrossRef] [PubMed]
  19. Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006). [CrossRef]
  20. S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991). [CrossRef]
  21. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol.42(5), 895–912 (1997). [CrossRef] [PubMed]
  22. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  23. E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  24. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  25. C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974). [CrossRef]
  26. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. J. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett.24(15), 1044–1046 (1999). [CrossRef] [PubMed]
  27. V. Sankaran, J. T. J. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett.25(4), 239–241 (2000). [CrossRef] [PubMed]
  28. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989). [CrossRef] [PubMed]
  29. L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012). [CrossRef] [PubMed]
  30. L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited