OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18354–18360

Characterization of the stray light in a space borne atmospheric AOTF spectrometer

Oleg Korablev, Anna Fedorova, Eric Villard, Lilian Joly, Alexander Kiselev, Denis Belyaev, and Jean-Loup Bertaux  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18354-18360 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Acousto-optic tunable filter (AOTF) spectrometers are being criticized for spectral leakage, distant side lobes of their spectral response function (SRF), or the stray light. SPICAM-IR is the AOTF spectrometer in the range of 1000-1700 nm with a resolving power of 1800-2200 operating on the Mars Express interplanetary probe. It is primarily dedicated to measurements of water vapor in the Martian atmosphere. SPICAM H2O retrievals are generally lower than simultaneous measurements with other instruments, the stray light suggested as a likely explanation. We report the results of laboratory measurements of water vapor in quantity characteristic for the Mars atmosphere (2-15 precipitable microns) with the Flight Spare model of SPICAM-IR. We simulated the measured spectra with HITRAN-based synthetic model, varying the water abundance, and the level of the stray light, and compared the results to the known amount of water in the cell. The retrieved level of the stray light, assumed uniformly spread over the spectral range, is below 1-1.3·10−4. The stray may be responsible for the underestimation of water abundance of up to 8%, or 0.6 pr. µm. The account for the stray light removes the bias completely; the overall accuracy to measure water vapor is ~0.2 pr. µm. We demonstrate that the AOTF spectrometer dependably measures the water abundance and can be employed as an atmospheric spectrometer.

© 2013 OSA

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(230.1040) Optical devices : Acousto-optical devices
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 24, 2013
Revised Manuscript: July 10, 2013
Manuscript Accepted: July 11, 2013
Published: July 24, 2013

Oleg Korablev, Anna Fedorova, Eric Villard, Lilian Joly, Alexander Kiselev, Denis Belyaev, and Jean-Loup Bertaux, "Characterization of the stray light in a space borne atmospheric AOTF spectrometer," Opt. Express 21, 18354-18360 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Chanover, D. A. Glenar, and J. J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res.103(E13), 31335–31348 (1998). [CrossRef]
  2. Y. Yuan, J.-Y. Hwang, M. Krishnamoorthy, K. Ye, Y. Zhang, J. Ning, R. C. Wang, M. J. Deen, and Q. Fang, “High-throughput acousto-optic-tunable-filter-based time-resolved fluorescence spectrometer for optical biopsy,” Opt. Lett.34(7), 1132–1134 (2009). [CrossRef] [PubMed]
  3. H. Kurosaki, “Earth observation by the adaptive wavelength optical image sensor,” Adv. Space Res.39(1), 185–189 (2007). [CrossRef]
  4. O. Korablev, J.-L. Bertaux, A. Fedorova, D. Fonteyn, A. Stepanov, Y. Kalinnikov, A. Kiselev, A. Grigoriev, V. Jegoulev, S. Perrier, E. Dimarellis, J. Dubois, A. Reberac, E. Van Ransbeeck, B. Gondet, F. Montmessin, and A. Rodin, “SPICAM IR acousto-optic spectrometer experiment on Mars Express,” J. Geophys. Res. E111(E9), E09S03 (2006). [CrossRef]
  5. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J. P. Dubois, and E. Villard, “Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 microm,” Appl. Opt.45(21), 5191–5206 (2006). [CrossRef] [PubMed]
  6. O. Korablev, A. Fedorova, J.-L. Bertaux, A. V. Stepanov, A. Kiselev, Y. K. Kalinnikov, A. Y. Titov, F. Montmessin, J. P. Dubois, E. Villard, V. Sarago, D. Belyaev, A. Reberac, and E. Neefs, “SPICAV IR acousto-optic spectrometer experiment on Venus Express,” Planet. Space Sci.65(1), 38–57 (2012). [CrossRef]
  7. A. Farina, I. Bargigia, P. Taroni, and A. Pifferi, “Note: comparison between a prism-based and an acousto-optic tunable filter-based spectrometer for diffusive media,” Rev. Sci. Instrum.84(1), 016109 (2013). [CrossRef] [PubMed]
  8. C. Pilorget, “Microscopie hyperspectrale dans le proche IR pour l'analyse in situ d échatillons: l'instrument MicroMega à bord des missions Phobos Grunt, Hayabusa-2 et ExoMars,” (Universite Paris-Sud XI, Institut d'Astrophysique Spatiale (IAS) Orsay, France, 2012), 254 pp.
  9. I. C. Chang, “Noncollinear acoustooptic filter with large angular aperture,” Appl. Phys. Lett.25(7), 370–372 (1974). [CrossRef]
  10. L. Maltagliati, D. V. Titov, T. Encrenaz, R. Melchiorri, F. Forget, H. U. Keller, and J.-P. Bibring, “Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express,” Icarus213(2), 480–495 (2011). [CrossRef]
  11. M. Tschimmel, N. I. Ignatiev, D. V. Titov, E. Lellouch, T. Fouchet, M. Giuranna, and V. Formisano, “Investigation of water vapor on Mars with PFS/SW of Mars Express,” Icarus195(2), 557–575 (2008). [CrossRef]
  12. T. Fouchet, E. Lellouch, N. I. Ignatiev, F. Forget, D. V. Titov, M. Tschimmel, F. Montmessin, V. Formisano, A. Giuranna, A. Maturilli, and T. Encrenaz, “Martian water vapor: Mars Express PFS/LW observations,” Icarus190(1), 32–49 (2007). [CrossRef]
  13. M. D. Smith, “Interannual variability in TES atmospheric observations of Mars during 1999-2003,” Icarus167(1), 148–165 (2004). [CrossRef]
  14. A. Fedorova, O. Korablev, J. Bertaux, A. Rodin, A. Kiselev, and S. Perrier, “Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions,” J. Geophys. Res. E111(E9), E09S08 (2006). [CrossRef]
  15. O. Korablev, N. Ignatiev, A. Fedorova, A. Rodin, L. Zasova, J. L. Bertaux, F. Montmessin, T. Encrenaz, E. Lellouch, T. Fouchet, V. Formisano, M. D. Smith, D. Titov, M. Tschimmel, L. Maltagliati, R. T. Clancy, A. Sprague, M. A. Lopez-Valverde, M. C. Desjean, J. P. Huot, F. Lefevre, S. Lebonnois, S. R. Lewis, E. Millour, P. L. Read, and R. J. Wilson, “Water in Mars atmosphere: comparison of recent data sets,” in Mars Atmosphere Modelling and Observations, F. Forget, ed. (2006), p. 244.
  16. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  17. O. Korablev, “Atmospheric water from Mars Express experiments,” in 37th COSPAR Scientific Assembly (Benjing, China, 2008), p. 1580.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited