OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18572–18581

Theoretical analysis of obliquely excited surface plasmon self-interference

Wendong Zou, Pinbo Huang, Wenjuan Ma, and Fei Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18572-18581 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the theoretical analysis of surface plasmon polaritons induced by a tightly focused light beam at oblique incidence. Firstly, we propose a geometrical model to explain the evolution of SPPs effect as light deviating from normal incidence, and introduce a concept of critical oblique angle (θco) which is one of the key factors affecting the stability, efficiency and lateral resolution of SPPs. Secondly, the integral expressions for the transmitted SPP field excited by a linearly polarized vortex beam are derived, using angular spectrum representation and rotation matrix trans-formation, for the oblique directions as parallel and perpendicular to polarization plane. An interesting finding is that the system completely goes out of SPP self-interference resonance at an incident angle smaller than θco at parallel obliquity, while larger than θco at perpendicular obliquity.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optics at Surfaces

Original Manuscript: June 10, 2013
Revised Manuscript: July 14, 2013
Manuscript Accepted: July 19, 2013
Published: July 26, 2013

Wendong Zou, Pinbo Huang, Wenjuan Ma, and Fei Guo, "Theoretical analysis of obliquely excited surface plasmon self-interference," Opt. Express 21, 18572-18581 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Grating, Springer Tracts in Modern Physics (Springer Berlin, 1988).
  2. T. W.  Ebbesen, H. J.  Lezec, H. F.  Ghaemi, T.  Thio, P. A.  Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. G. E.  Cragg, P. T. C.  So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25(1), 46–48 (2000). [CrossRef] [PubMed]
  4. E.  Chung, D. K.  Kim, P. T. C.  So, “Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett. 31(7), 945–947 (2006). [CrossRef] [PubMed]
  5. B.  Bailey, D. L.  Farkas, D. L.  Taylor, F.  Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993). [CrossRef] [PubMed]
  6. H.  Ditlbacher, J. R.  Krenn, G.  Schider, A.  Leitner, F. R.  Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762 (2002). [CrossRef]
  7. T.  Nikolajsen, K.  Leosson, S. I.  Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004). [CrossRef]
  8. H.  Kano, S.  Mizuguchi, S.  Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998). [CrossRef]
  9. A.  Bouhelier, F.  Ignatovich, A.  Bruyant, C.  Huang, G.  Colas des Francs, J.-C.  Weeber, A.  Dereux, G. P.  Wiederrecht, L.  Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  10. P. S.  Tan, X. C.  Yuan, J.  Lin, Q.  Wang, R. E.  Burge, “Analysis of surface Plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008). [CrossRef] [PubMed]
  11. D.  Ganic, X. S.  Gan, M.  Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003). [CrossRef] [PubMed]
  12. Q. W.  Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  13. B.  Richards, E.  Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  14. E.  Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]
  15. L. Novotny and B. Hetch, Principle of Nano-optics (Cambridge U. Press, 2006).
  16. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge MA, 2005).
  17. P. B.  Johnson, R. W.  Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  18. T. M.  Hsu, C. C.  Chang, Y. F.  Hwang, K. C.  Lee, “The Dielectric Function of Silver by ATR Technique,” Chin. J. Phys. 21(1), 26–32 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited