OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18671–18679

Enhancement of nonlinear Raman-Nath diffraction in two-dimensional optical superlattice

Wenjie Wang, Yan Sheng, Vito Roppo, Zhihui Chen, Xiaoying Niu, and Wieslaw Krolikowski  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18671-18679 (2013)
http://dx.doi.org/10.1364/OE.21.018671


View Full Text Article

Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study second harmonic generation via nonlinear Raman-Nath diffraction in an optical superlattice that maintains a periodic modulation of the second-order nonlinear coefficient χ(2) in transverse direction but undergoes random modulation in longitudinal direction. We show that the random χ(2) modulation offers a continuous set of reciprocal lattice vectors to compensate for the phase mismatch of nonlinear Raman-Nath diffraction in the longitudinal direction, leading to more efficient harmonic generation for a wide range of wavelengths. We also characterize the intensity dependence of nonlinear Raman-Nath diffraction on the degree of randomness of the optical supperlattice.

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7220) Nonlinear optics : Upconversion
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 1, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: July 8, 2013
Published: July 30, 2013

Citation
Wenjie Wang, Yan Sheng, Vito Roppo, Zhihui Chen, Xiaoying Niu, and Wieslaw Krolikowski, "Enhancement of nonlinear Raman-Nath diffraction in two-dimensional optical superlattice," Opt. Express 21, 18671-18679 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18671


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62, 435–437 (1993). [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12, 2012–2116 (1995). [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278, 843–846 (1997). [CrossRef]
  4. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett.95, 133901 (2005). [CrossRef] [PubMed]
  5. I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett.21, 1404–1406 (1968). [CrossRef]
  6. S. M. Saltiel, D. N. Neshev, R. Fischer, W. K. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett.100, 103902 (2008). [CrossRef] [PubMed]
  7. S. M. Saltiel, D. N. Neshev, W. K. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett.34, 848–850 (2009). [CrossRef] [PubMed]
  8. X. Deng, H. Ren, H. Lao, and X. Chen, “Non-collinear efficient continuous optical frequency doubling in periodically poled lithium niobate,” Appl. Phys. B100, 755–758 (2010). [CrossRef]
  9. N. An, H. Ren, Y Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2)nonlinear photonic crystal,” Appl. Phys. Lett.100, 221103 (2012). [CrossRef]
  10. Y. Sheng, A. Best, H-J. Butt, W. Krolikowksi, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation,” Opt. Express18, 16539–16545 (2010). [CrossRef] [PubMed]
  11. Y. Sheng, W. Wang, R. Shiloh, V. Roppo, A. Arie, and W. Krolikowski, “Third-harmonic generation via nonlinear Raman-Nath diffraction in nonlinear photonic crystal,” Opt. Lett.36, 3266–3268 (2011). [CrossRef] [PubMed]
  12. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100, 163904 (2008). [CrossRef] [PubMed]
  13. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 12.
  14. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. K. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett.100, 103902 (2008). [CrossRef] [PubMed]
  15. A. Shapira and A. Arie, “Phase-matched nonlinear diffraction,” Opt. Lett.36, 1933–1935 (2011). [CrossRef] [PubMed]
  16. M. Baudrier-Raybaut, R. Haidar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London)432, 374–376 (2004). [CrossRef]
  17. A. Pasquazi, A. Busacca, S. Stivala, R. Morandotti, and G. Assanto, “Nonlinear disorder mapping through three-wave mixing,” IEEE Photonics J2, 18–28 (2010). [CrossRef]
  18. W. Wang, V. Roppo, K. Kalinowski, Y. Kong, D. N. Neshev, C. Cojocaru, J. Trull, R. Vilaseca, K. Staliunas, W. Krolikowski, S. M. Saltiel, and Y. Kivshar, “Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media,” Opt. Express17, 20117–20123 (2009). [CrossRef] [PubMed]
  19. J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D.N. Neshev, R. Vilaseca, K. Staliunas, and Y.S. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B95, 609–615 (2009). [CrossRef]
  20. Th. Woike, T. Granzow, U. Dörfler, Ch. Poesch, M. Wöhlecke, and R. Pankrath, “Refractive indices of congruently melting Sr0.61Ba0.39Nb2O6,” Phys. Status Solidi A186, R13–R15 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited