OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19269–19279

Comparison of 128-SP-QAM and PM-16QAM in long-haul WDM transmission

Tobias A. Eriksson, Martin Sjödin, Pontus Johannisson, Peter A. Andrekson, and Magnus Karlsson  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19269-19279 (2013)
http://dx.doi.org/10.1364/OE.21.019269


View Full Text Article

Enhanced HTML    Acrobat PDF (1655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate 128-level set-partitioning quadrature amplitude modulation (128-SP-QAM) experimentally and compare the performance to polarization-multiplexed 16QAM both at the same bit rate and at the same symbol rate. Using a recirculating loop we study both single channel and wavelength-division multiplexing (WDM) transmission and demonstrate a reach of up to 2680 km at a bit-error rate of 10−3 for 128-SP-QAM. We confirm that 128-SP-QAM has an increased sensitivity compared to PM-16QAM and show that the maximum transmission distance can be increased by more than 50 % at the same bit rate for both single channel and WDM transmission. We also investigate the performance at the same symbol rate as a possible fall back solution in a degrading link.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 19, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: July 29, 2013
Published: August 7, 2013

Citation
Tobias A. Eriksson, Martin Sjödin, Pontus Johannisson, Peter A. Andrekson, and Magnus Karlsson, "Comparison of 128-SP-QAM and PM-16QAM in long-haul WDM transmission," Opt. Express 21, 19269-19279 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Sun, K. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16, 873–879 (2008). [CrossRef] [PubMed]
  2. T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006). [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28, 547–556 (2010). [CrossRef]
  4. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.
  5. H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2009), paper OWG2. [CrossRef]
  6. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol.27, 5115–5126 (2009). [CrossRef]
  7. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17, 10814–10819 (2009). [CrossRef] [PubMed]
  8. G. Ungerboeck, “Channel coding with multilevel / phase signals,” IEEE Trans. Inf. Theory28, 55–67 (1982). [CrossRef]
  9. M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011). [CrossRef]
  10. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express19, 7839–7846 (2011). [CrossRef] [PubMed]
  11. D. Millar, D. Lavery, S. Makovejs, C. Behrens, B. Thomsen, P. Bayvel, and S. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express19, 9296–9302 (2011). [CrossRef] [PubMed]
  12. J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4. [CrossRef]
  13. H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.
  14. M. Karlsson and E. Agrell, “Four-dimensional optimized constellations for coherent optical transmission systems,” in European Conference and Exhibition on Optical Communication (2010), paper We.8.C.3. [CrossRef]
  15. M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” in European Conference and Exhibition on Optical Communication, (2011), paper Tu.6.B.6. [CrossRef]
  16. X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1. [CrossRef]
  17. X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011). [CrossRef]
  18. S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3. [CrossRef]
  19. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012). [CrossRef] [PubMed]
  20. L. Coelho and N. Hanik, “Global otimization of fiber-optic communication systems using four-dimensional modulation formats,” in European Conference and Exhibition on Optical Communication, (2011), paper Mo.2.B.4. [CrossRef]
  21. M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1. [CrossRef]
  22. J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5. [CrossRef]
  23. M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012). [CrossRef] [PubMed]
  24. H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.
  25. H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.
  26. T. A. Eriksson, M. Sjödin, P. Andrekson, and M. Karlsson, “Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.2.
  27. J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.
  28. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19, 7734–7741 (2011). [CrossRef] [PubMed]
  29. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179 (2010). [CrossRef]
  30. T. Pfau, S. Hoffmann, and R. Nóe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27, 989–999 (2009). [CrossRef]
  31. J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982). [CrossRef]
  32. F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16. [CrossRef]
  33. B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012). [CrossRef]
  34. T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited