OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19544–19554

Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics

D. Wei, U. Bortolozzo, J. P. Huignard, and S. Residori  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19544-19554 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.2055) Nonlinear optics : Dynamic gratings
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Slow and Fast Light

Original Manuscript: May 20, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 14, 2013
Published: August 13, 2013

D. Wei, U. Bortolozzo, J. P. Huignard, and S. Residori, "Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics," Opt. Express 21, 19544-19554 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007). [CrossRef] [PubMed]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007). [CrossRef]
  3. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast” light,” in Progress in Optics, edited by E. Wolf, (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530. [CrossRef]
  4. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009). [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999). [CrossRef]
  6. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011). [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  8. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express13, 9909–9915 (2005). [CrossRef] [PubMed]
  9. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007). [CrossRef] [PubMed]
  10. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474 (2008). [CrossRef]
  11. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13, 6092–6098 (2005). [CrossRef] [PubMed]
  12. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003). [CrossRef] [PubMed]
  13. G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004). [CrossRef] [PubMed]
  14. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008). [CrossRef] [PubMed]
  15. U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010). [CrossRef]
  16. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001). [CrossRef] [PubMed]
  17. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001). [CrossRef] [PubMed]
  18. T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005). [CrossRef] [PubMed]
  19. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011). [CrossRef]
  20. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009). [CrossRef] [PubMed]
  21. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002). [CrossRef] [PubMed]
  22. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005). [CrossRef] [PubMed]
  23. M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004). [CrossRef] [PubMed]
  24. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471, 221–267 (2009). [CrossRef]
  25. F. Simoni, L. Lucchetti, D. Lucchetta, and O. Francescangeli, “On the origin of the huge nonlinear response of dye-doped liquid crystals,” Opt. Express9, 85–90 (2001). [CrossRef] [PubMed]
  26. I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998). [CrossRef]
  27. D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003). [CrossRef]
  28. P. G. de Gennes and J. Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).
  29. G. Chilaya, Cholesteric liquid crystals: optics, electrooptics and photooptics in Chirality in Lliquid Crystals, Ch. Bahr and H. Kitzerow, eds (Springer Verlag, New York, 2000).
  30. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995). [CrossRef] [PubMed]
  31. D. Wei, A. Iljin, Z. Cai, S. Residori, and U. Bortolozzo, “Two-wave mixing in chiral dye-doped nematic liquid crystals,” Opt. Lett.37, 734–736 (2012). [CrossRef] [PubMed]
  32. D. Wei, S. Residori, and U. Bortolozzo, “Phase conjugation and slow light in dye-doped chiral nematics,” Opt. Lett.37, 4684–4686 (2012). [CrossRef] [PubMed]
  33. I. C. Khoo and T.-H. Lin, “Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals,” Opt. Lett.37, 3225–3227 (2012). [CrossRef] [PubMed]
  34. D. Wei, “Nonlinear optical studies of chiral liquid crystals,” PhD thesis, University of Nice-Sophia Antipolis (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited