OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19555–19567

Sub-pg mass sensing and measurement with an optomechanical oscillator

Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19555-19567 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mass sensing based on mechanical oscillation frequency shift in micro/nano scale mechanical oscillators is a well-known and widely used technique. Piezo-electric, electronic excitation/detection and free-space optical detection are the most common techniques used for monitoring the minute frequency shifts induced by added mass. The advent of optomechanical oscillator (OMO), enabled by strong interaction between circulating optical power and mechanical deformation in high quality factor optical microresonators, has created new possibilities for excitation and interrogation of micro/nanomechanical resonators. In particular, radiation pressure driven optomechanical oscillators (OMOs) are excellent candidates for mass detection/measurement due to their simplicity, sensitivity and all-optical operation. In an OMO, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring of the mechanical eigen-frequencies of the cavity structure. Here, we show the narrow linewidth of optomechanical oscillation combined with harmonic optical modulation generated by nonlinear optical transfer function, can result in sub-pg mass sensitivity in large silica microtoroid OMOs. Moreover by carefully studying the impact of mechanical mode selection, device dimensions, mass position and noise mechanisms we explore the performance limits of OMO both as a mass detector and a high resolution mass measurement system. Our analysis shows that femtogram level resolution is within reach even with relatively large OMOs.

© 2013 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(230.3990) Optical devices : Micro-optical devices
(230.4910) Optical devices : Oscillators
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: June 28, 2013
Revised Manuscript: July 30, 2013
Manuscript Accepted: August 1, 2013
Published: August 13, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh, "Sub-pg mass sensing and measurement with an optomechanical oscillator," Opt. Express 21, 19555-19567 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys.74(036101), 1–30 (2011).
  2. J. Tamayo, P. M. Kosaka, J. J. Ruz, A. San Paulo, and M. Calleja, “Biosensors based on nanomechanical systems,” Chem. Soc. Rev.42(3), 1287–1311 (2013). [CrossRef] [PubMed]
  3. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip7(10), 1238–1255 (2007). [CrossRef] [PubMed]
  4. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum.75(7), 2229–2253 (2004). [CrossRef]
  5. N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett.82(16), 2697–2699 (2003). [CrossRef]
  6. A. Cagliani and Z. J. Davis, “Ultrasensitive bulk disk microresonator-based sensor for distributed mass sensing,” J. Micromech. Microeng.21(045016), 1–6 (2011).
  7. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, J. L. Stepnowski, and R. A. McGill, “Waveguide micro-opto-electro-mechanical resonant chemical sensors,” Lab Chip10(6), 762–768 (2010). [CrossRef] [PubMed]
  8. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol.2(2), 114–120 (2007). [CrossRef] [PubMed]
  9. M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express20(12), 12742–12751 (2012). [CrossRef] [PubMed]
  10. Y. H. Tao, X. X. Li, T. G. Xu, H. T. Yu, P. C. Xu, B. Xiong, and C. Z. Wei, “Resonant cantilever sensors operated in a high-Q in-plane mode for real-time bio/chemical detection in liquids,” Sens. Actuators B Chem.157(2), 606–614 (2011). [CrossRef]
  11. Y. Lee, G. Lim, and W. Moon, “A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique,” Sens. Actuators A Phys.130-131, 105–110 (2006). [CrossRef]
  12. J. W. Yi, W. Y. Shih, and W.-H. Shih, “Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers,” J. Appl. Phys.91(3), 1680–1686 (2002). [CrossRef]
  13. F. Liu and M. Hossein-Zadeh, “Mass Sensing with Optomechanical Oscillation,” IEEE Sensors13(1), 146–147 (2013). [CrossRef]
  14. T. J. Kippenberg and K. J. Vahala, “Cavity Opto-Mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  15. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express13(14), 5293–5301 (2005). [CrossRef] [PubMed]
  16. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A74(2), 023813 (2006). [CrossRef]
  17. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and Experimental Study of Radiation Pressure-Induced Mechanical Oscillations (Parametric Instability) in Optical Microcavities,” IEEE J. Sel. Top. Quantum Electron.12(1), 96–107 (2006).
  18. M. Hossein-Zadeh and K. J. Vahala, “Optomechanical Oscillator on a Silicon Chip”, Invited Paper, J Sel. Top. Quantum Electron. Special Issue on Silicon Photonics16(1), 276–287 (2010).
  19. H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett.89(6), 261109 (2006).
  20. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  21. W. C. Jiang, X. Y. Lu, J. D. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express20(14), 15991–15996 (2012). [CrossRef] [PubMed]
  22. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express19(24), 24522–24529 (2011). [CrossRef] [PubMed]
  23. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  24. M. Li, W. H. P. Pernice, and H. X. Tang, “Ultra-high-frequency nano-optomechanical resonators in slot waveguide ring cavities,” Appl. Phys. Lett.97(18), 183110 (2010).
  25. M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, “Integrated waveguide-DBR microcavity opto-mechanical system,” Opt. Express19(22), 21904–21918 (2011). [CrossRef] [PubMed]
  26. A. Schliesser, G. Anetsberger, R. Riviere, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys.10(9), 095015 (2008). [CrossRef]
  27. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  28. F. Liu and M. Hossein-Zadeh, “On the spectrum of the radiation-pressure-driven optomechanical oscillator and its application in sensing,” Opt. Commun.294, 338–343 (2013). [CrossRef]
  29. S. Dohn, W. Svendsen, A. Boisen, and O. Hansen, “Mass and position determination of attached particles on cantilever based mass sensors,” Rev. Sci. Instrum.78(10), 103303 (2007). [CrossRef] [PubMed]
  30. S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, “Enhanced functionality of cantilever based mass sensors using higher modes,” Appl. Phys. Lett.86(23), 233501 (2005). [CrossRef]
  31. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic Optical Resonators: A New Tool for Laser Frequency Stabilization at the 1 Hz Level,” Phys. Rev. Lett.78(25), 4741–4744 (1997). [CrossRef]
  32. T. W. Hansch and B. Couillaud, “Laser Frequency Stabilization by Polarization Spectroscopy of a Reflecting Reference Cavity,” Opt. Commun.35(3), 441–444 (1980). [CrossRef]
  33. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B31(2), 97–105 (1983). [CrossRef]
  34. G. Bahl, K.-H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat Commun4, 1994 (2013). [CrossRef] [PubMed]
  35. K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control49(2), 169–176 (2002). [CrossRef] [PubMed]
  36. B. Ilic, Y. Yang, and H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett.85(13), 2604–2606 (2004). [CrossRef]
  37. R. Sandberg, K. Molhave, A. Boisen, and W. Svendsen, “Effect of gold coating on the Q-factor of a resonant cantilever,” J. Micromech. Microeng.15(12), 2249–2253 (2005). [CrossRef]
  38. N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng.20(4), 045023 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited