OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19579–19592

A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator

Boris Korzh, Nino Walenta, Raphael Houlmann, and Hugo Zbinden  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19579-19592 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel source based on a dual-drive modulator that is adaptable and allows Alice to choose between various practical quantum key distribution (QKD) protocols depending on what receiver she is communicating with. Experimental results show that the proposed transmitter is suitable for implementation of the Bennett and Brassard 1984 (BB84), coherent one-way (COW) and differential phase shift (DPS) protocols with stable and low quantum bit error rate. This could become a useful component in network QKD, where multi-protocol capability is highly desirable.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4785) Fiber optics and optical communications : Optical security and encryption
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(250.4110) Optoelectronics : Modulators

ToC Category:
Quantum Optics

Original Manuscript: June 25, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 6, 2013
Published: August 13, 2013

Boris Korzh, Nino Walenta, Raphael Houlmann, and Hugo Zbinden, "A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator," Opt. Express 21, 19579-19592 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.27, 379–423 (1948). [CrossRef]
  2. C. Portmann, “Key recycling in authentication,” arXiv:1202.1229 [cs.IT] (2012).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  4. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81, 1301–1350 (2009). [CrossRef]
  5. M. Ben-Or, M. Horodecki, D. Leung, D. Mayers, and J. Oppenheim, “The universal composable security of quantum key distribution,” inTheory of Cryptography, vol. 3378 of Lecture Notes in Computer Science, J. Kilian, ed. (SpringerBerlin Heidelberg, 2005), pp. 386–406. [CrossRef]
  6. R. Renner and R. König, “Universally composable privacy amplification against quantum adversaries,” inTheory of Cryptography, vol. 3378 of Lecture Notes in Computer Science, J. Kilian, ed. (SpringerBerlin Heidelberg, 2005), pp. 407–425. [CrossRef]
  7. S. Wiesner, “Conjugate coding,” SIGACT News15, 78–88 (1983). [CrossRef]
  8. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing(IEEE, 1984), pp. 175–179.
  9. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys.11, 075001 (2009). [CrossRef]
  10. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys.11, 105001 (2009). [CrossRef]
  11. D. Lancho, J. Martínez-Mateo, D. Elkouss, M. Soto, and V. Martin, “QKD in standard optical telecommunications networks,” in 1st Int. Conf. on Quantum Communication and Quantum Networking(2010), vol. 36, pp. 142–149. [CrossRef]
  12. T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan all-pass and inter-city quantum communication network,” Opt. Express18, 27217–27225 (2010). [CrossRef]
  13. D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys.13, 123001 (2011). [CrossRef]
  14. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express19, 10387–10409 (2011). [CrossRef] [PubMed]
  15. K. Yoshino, A. Tanaka, Y. Nambu, A. Tajima, and A. Tomita, “Dual-mode time-bin coding for quantum key distribution using dual-drive Mach-Zehnder modulator,” in 33rd European Conference and Ehxibition of Optical Communication(ECOC, 2007), pp. 1–2 (2007).
  16. K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, “High-speed wavelength-division multiplexing quantum key distribution system,” Opt. Lett.37, 223–225 (2012). [CrossRef] [PubMed]
  17. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett.87, 194108 (2005). [CrossRef]
  18. C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J Phys.10, 013031 (2008). [CrossRef]
  19. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett.89, 037902 (2002). [CrossRef] [PubMed]
  20. C. Liu, S. Zhang, L. Zhao, P. Chen, C. H. F. Fung, H. F. Chau, M. M. T. Loy, and S. Du, “Differential-phase-shift quantum key distribution using heralded narrow-band single photons,” Opt. Express21, 9505–9513 (2013). [CrossRef] [PubMed]
  21. A. Tomita, K. Yoshino, Y. Nambu, A. Tajima, A. Tanaka, S. Takahashi, W. Maeda, S. Miki, Z. Wang, M. Fujiwara, and M. Sasaki, “High speed quantum key distribution system,” Opt. Fiber Technol.16, 55–62 (2010). [CrossRef]
  22. H.-K. Lo and J. Preskill, “Security of quantum key distribution using weak coherent states with nonrandom phases,” Quantum Info. Comput.7, 431–458 (2007).
  23. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett.92, 057901 (2004). [CrossRef] [PubMed]
  24. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett.68, 3121–3124 (1992). [CrossRef] [PubMed]
  25. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in IEEE J. Quantum Electron.6, 69–82 (2000). [CrossRef]
  26. J. Capmany and C. R. Fernández-Pousa, “Quantum model for electro-optical phase modulation,” J. Opt. Soc. Am. B27, A119–A129 (2010). [CrossRef]
  27. J. Capmany and C. R. Fernández-Pousa, “Quantum model for electro-optical amplitude modulation,” Opt. Express18, 25127–25142 (2010). [CrossRef] [PubMed]
  28. K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. Light-wave Technol.23, 764–770 (2005). [CrossRef]
  29. M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nature Communications3(2012). [CrossRef] [PubMed]
  30. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73, 012344 (2006). [CrossRef]
  31. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett.82, 2594–2597 (1999). [CrossRef]
  32. Z. Walton, A. Sergienko, B. Saleh, and M. Teich, “Noise-Immune Quantum Key Distribution,” in Quantum Communications and Cryptography (CRC Press, 2005), pp. 211–224. [CrossRef]
  33. C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30 km,” Opt. Lett.20, 1695–1697 (1995). [CrossRef] [PubMed]
  34. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Express19, 20665–20672 (2011). [CrossRef] [PubMed]
  35. X.-B. Wang, “A review on the decoy-state method for practical quantum key distribution,” arXiv:quant-ph/0509084 (2005).
  36. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt.59, 1481–1488 (2012). [CrossRef]
  37. N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” Appl. Phys.112, 063106 (2012).
  38. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013). [CrossRef]
  39. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nature Photonics7, 210–214 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited