OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19743–19749

Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis

Justin L. Neill, Brent J. Harris, Amanda L. Steber, Kevin O. Douglass, David F. Plusquellic, and Brooks H. Pate  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19743-19749 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chirped-pulse Fourier transform spectroscopy has recently been extended to millimeter wave spectroscopy as a technique for the characterization of room-temperature gas samples. Here we present a variation of this technique that significantly reduces the technical requirements on high-speed digital electronics and the data throughput, with no reduction in the broadband spectral coverage and no increase in the time required to reach a given sensitivity level. This method takes advantage of the frequency agility of arbitrary waveform generators by utilizing a series of low-bandwidth chirped excitation pulses paired in time with a series of offset single frequency local oscillators, which are used to detect the molecular free induction decay signals in a heterodyne receiver. A demonstration of this technique is presented in which a 67 GHz bandwidth spectrum of methanol (spanning from 792 to 859 GHz) is acquired in 58 μs.

© 2013 OSA

OCIS Codes
(040.6070) Detectors : Solid state detectors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 22, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 6, 2013
Published: August 15, 2013

Virtual Issues
August 16, 2013 Spotlight on Optics

Justin L. Neill, Brent J. Harris, Amanda L. Steber, Kevin O. Douglass, David F. Plusquellic, and Brooks H. Pate, "Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis," Opt. Express 21, 19743-19749 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Gordy and R. L. Cook, Microwave Molecular Spectra (John Wiley and Sons, 1984).
  2. C. Townes and A. Schawlow, Microwave Spectroscopy (Dover, 1975).
  3. D. Petkie, T. Goyette, R. Bettens, S. Belov, S. Belov, S. Albert, P. Helminger, and F. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum.68(4), 1675–1683 (1997). [CrossRef]
  4. I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett.35(10), 1533–1535 (2010). [CrossRef] [PubMed]
  5. C. Neese, I. Medvedev, G. Plummer, A. Frank, C. Ball, and F. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J.12(8), 2565–2574 (2012). [CrossRef]
  6. C. P. Endres, F. Lewen, T. F. Giesen, S. Schlemmer, D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, and A. E. Zhucov, “Application of superlattice multipliers for high-resolution terahertz spectroscopy,” Rev. Sci. Instrum.78(4), 043106 (2007). [CrossRef] [PubMed]
  7. M. H. Ordu, H. S. P. Muller, A. Walters, M. Nunez, F. Lewen, A. Belloche, K. M. Menten, and S. Schlemmer, “The quest for complex molecules in space: laboratory spectroscopy of n-butyl cyanide, n-C4H9CN, in the millimeter wave region and its astronomical search in Sagittarius B2(N),” Astron. Astrophys. 541, A121 (2012).
  8. R. A. Motiyenko, L. Margules, E. A. Alekseev, J.-C. Guillemin, and J. Demaison, “Centrifugal distortion analysis of the rotational spectrum of aziridine: Comparison of different Hamiltonians,” Astron. Astrophys. 264, 94–99 (2010).
  9. A. Krupnov, M. Tretyakov, Y. Dryagin, and S. Volokhov, “Extension of the range of microwave spectroscopy to 1.3 THz,” J. Mol170(Spec.), 279–284 (1995).
  10. B. Drouin, F. Maiwald, and J. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum.76(9), 093113 (2005). [CrossRef]
  11. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz Laser Study of Self-Pressure and Temperature Broadening and Shifts of Water Lines for Pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transf.87(3-4), 377–385 (2004). [CrossRef]
  12. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008). [CrossRef] [PubMed]
  13. D. Zaleski, J. Neill, M. Muckle, N. Seifert, P. Carroll, S. Widicus Weaver, and B. Pate, “A Ka-band chirped-pulse Fourier transform microwave spectrometer,” J. Mol. Spectrosc.280, 68–76 (2012).
  14. G. B. Park, A. H. Steeves, K. Kuyanov-Prozument, J. L. Neill, and R. W. Field, “Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region,” J. Chem. Phys.135(2), 024202 (2011). [CrossRef] [PubMed]
  15. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express19(9), 8973–8984 (2011). [CrossRef] [PubMed]
  16. A. Steber, B. Harris, J. Neill, and B. Pate, “An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295 GHz,” J. Mol. Spectrosc.280, 3–10 (2012). [CrossRef]
  17. T. Crowe, W. Bishop, D. Porterfield, J. Hesler, and R. Weikle, “Opening the terahertz window with integrated diode circuits,” IEEE J. Solid-State Circuits40(10), 2104–2110 (2005). [CrossRef]
  18. Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement or that the equipment identified is the best available.
  19. J. U. White, “Long optical path of large aperture,” J. Opt. Soc. Am.32(5), 285–288 (1942). [CrossRef]
  20. R. G. Pilston and J. U. White, “A long path gas absorption cell,” J. Opt. Soc. Am.44(7), 572–573 (1954). [CrossRef]
  21. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf.91(3), 287–295 (2005). [CrossRef]
  22. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf.60(5), 883–890 (1998). [CrossRef]
  23. J. McGurk, T. Schmalz, and W. Flygare, “Fast passage in rotational spectroscopy: theory and experiment,” J. Chem. Phys.60(11), 4181 (1974). [CrossRef]
  24. S. M. Fortman, I. R. Medvedev, C. F. Neese, and F. C. De Lucia, “How complete are astrophysical catalogs for the millimeter and submillimeter spectral region?” Astrophys. J.725(1), L11–L14 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited