OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19778–19789

Nanocavity-based self-frequency conversion laser

Yasutomo Ota, Katsuyuki Watanabe, Satoshi Iwamoto, and Yasuhiko Arakawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19778-19789 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-frequency conversion (SFC), where both laser oscillation and nonlinear frequency conversion occurs in the same laser crystal, has been used to efficiently extend the operational wavelength of lasers. Downsizing of the cavity mode volume (V) and increasing the quality factor (Q) could lead to a more efficient conversion process, mediated by enhanced n-th order nonlinearities that generally scale as (Q/V)n. Here, we demonstrate nanocavity-based SFC by utilizing photonic crystal nanocavity quantum dot lasers. The high Q and small V supported in semiconductor-based nanocavities facilitate efficient SFC to generate visible light, even with only a few photons present in the laser cavity. The combined broadband quantum dot gain and small device footprint enables the monolithic integration of 26 different-color nanolasers (spanning 493-627 nm) within a micro-scale region. These nanolasers provide a new platform for studying few-photon nonlinear optics, and for realizing full-color lasers on a single semiconductor chip.

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: May 10, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 16, 2013
Published: August 15, 2013

Yasutomo Ota, Katsuyuki Watanabe, Satoshi Iwamoto, and Yasuhiko Arakawa, "Nanocavity-based self-frequency conversion laser," Opt. Express 21, 19778-19789 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  2. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express19(13), 12408–12417 (2011). [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  4. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007). [CrossRef]
  5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009). [CrossRef]
  7. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011). [CrossRef]
  8. M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007). [CrossRef]
  9. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009). [CrossRef] [PubMed]
  10. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express18(25), 26613–26624 (2010). [CrossRef] [PubMed]
  11. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012). [CrossRef]
  12. A. Hayat and M. Orenstein, “Standing-wave nonlinear optics in an integrated semiconductor microcavity,” Opt. Lett.32(19), 2864–2866 (2007). [CrossRef] [PubMed]
  13. L. F. Johnson, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969). [CrossRef]
  14. A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin.91(3-4), 121–132 (2000). [CrossRef]
  15. F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004). [CrossRef]
  16. M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006). [CrossRef] [PubMed]
  17. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express15(12), 7303–7318 (2007). [CrossRef] [PubMed]
  18. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15(24), 16161–16176 (2007). [CrossRef] [PubMed]
  19. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007). [CrossRef]
  20. N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996). [CrossRef]
  21. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006). [CrossRef] [PubMed]
  22. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011). [CrossRef]
  23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997). [CrossRef]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  25. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity,” Opt. Express17, 22689–22703 (2009). [CrossRef] [PubMed]
  26. W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006). [CrossRef] [PubMed]
  27. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991). [CrossRef]
  28. P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994). [CrossRef] [PubMed]
  29. V. Roppo, F. Raineri, R. Raj, I. Sagnes, J. Trull, R. Vilaseca, M. Scalora, and C. Cojocaru, “Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity,” Opt. Lett.36(10), 1809–1811 (2011). [CrossRef] [PubMed]
  30. S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010). [CrossRef] [PubMed]
  31. R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994). [CrossRef]
  32. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011). [CrossRef]
  33. S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001). [CrossRef]
  34. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett.18(13), 1053–1055 (1993). [CrossRef] [PubMed]
  35. P. Mandel and X. G. Wu, “Second-harmonic generation in a laser cavity,” J. Opt. Soc. Am. B3(7), 940–948 (1986). [CrossRef]
  36. R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993). [CrossRef] [PubMed]
  37. M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991). [CrossRef] [PubMed]
  38. A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited