OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19825–19833

Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier

Benoît Filion, W. C. Ng, An. T. Nguyen, Leslie A. Rusch, and Sophie LaRochelle  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19825-19833 (2013)
http://dx.doi.org/10.1364/OE.21.019825


View Full Text Article

Enhanced HTML    Acrobat PDF (2082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate wavelength conversion based on four-wave mixing in a semiconductor optical amplifier of signals with quadrature amplitude modulation (QAM). We first demonstrate wavelength conversion of 16 Gbaud 16-QAM signals over the entire C-band using two co-polarized pumps with low power penalty at the forward error correction threshold (FEC) for a wide range of input optical-signal-to-noise-ratio (OSNR). We also demonstrate for the first time wavelength conversion of 5 Gbaud 64-QAM signals in a semiconductor optical amplifier with bit-error rate below the FEC threshold over the entire C-band and investigate the dependence of the power penalty on input OSNR with a single pump configuration.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 26, 2013
Revised Manuscript: July 27, 2013
Manuscript Accepted: August 1, 2013
Published: August 15, 2013

Citation
Benoît Filion, W. C. Ng, An. T. Nguyen, Leslie A. Rusch, and Sophie LaRochelle, "Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier," Opt. Express 21, 19825-19833 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011). [CrossRef]
  2. C. Tremblay, A. Enriquez-Castillo, M. P. Belanger, and F. Gagnon, “Filterless WDM optical core networks based on coherent systems,” in Proceedings of International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011, paper Tu.D1.4. [CrossRef]
  3. S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. E. Willner, “λ-conversion of 160-Gbit/s PDM 16-QAM using a single periodically-poled lithium niobate waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OWG5. [CrossRef]
  4. R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OThC2.
  5. A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and S. Radic, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America 2012), paper Th.2.F.2. [CrossRef]
  6. A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995). [CrossRef]
  7. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998). [CrossRef]
  8. B. Filion, A. T. Nguyen, S. Amiralizadeh, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2013), paper OTh1C.5. [CrossRef]
  9. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol.25(3), 891–900 (2007). [CrossRef]
  10. M. J. Connelly and C. L. Janer, “Modeling of semiconductor optical amplifier RIN and phase noise for optical PSK systems,” in Proceedings of Numerical Simulation of Optoelectronic Devices, Rome, Italy, 2011, pp. 95–96.
  11. R. Elschner and K. Petermann, “Pump-induced nonlinear phase noise in wavelength converters based on four-wave mixing in SOAs,” in Proceedings of IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Belek-Antalya, 2009), pp. 779–780. [CrossRef]
  12. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012). [CrossRef]
  13. X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005). [CrossRef]
  14. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007). [CrossRef]
  15. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002). [CrossRef]
  16. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013). [CrossRef]
  17. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012). [CrossRef] [PubMed]
  18. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 µm,” J. Lightwave Technol.26(11), 1498–1509 (2008). [CrossRef]
  19. N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008). [CrossRef]
  20. M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett.23(10), 615–617 (2011). [CrossRef]
  21. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, paper P3.08 (2009).
  22. S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009). [CrossRef]
  23. J. G. Proakis and D. K. Manolakis, in Digital Signal Processing: Principles, Algorithms and Applications, (Prentice Hall, 1995).
  24. W.-R. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol.31(13), 2146–2162 (2013). [CrossRef]
  25. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012). [CrossRef]
  26. A. Ghazisaeidi and L. Rusch, “On the efficiency of digital back-propagation for mitigating SOA-induced nonlinear impairments,” J. Lightwave Technol.29(21), 3331–3339 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited