OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19834–19849

Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasistatic approximation

Kwangmoo Kim and D. Stroud  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19834-19849 (2013)
http://dx.doi.org/10.1364/OE.21.019834


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have calculated the photonic band structures of metallic inverse opals and of periodic linear chains of spherical pores in a metallic host, below a plasma frequency ωp. In both cases, we use a tight-binding approximation, assuming a Drude dielectric function for the metallic component, but without making the quasistatic approximation. The tight-binding modes are linear combinations of the single-cavity transverse magnetic (TM) modes. For the inverse-opal structures, the lowest modes are analogous to those constructed from the three degenerate atomic p-states in fcc crystals. For the linear chains, in the limit of small spheres compared to a wavelength, the results bear some qualitative resemblance to the dispersion relation for metal spheres in an insulating host, as calculated by Brongersma et al. [Phys. Rev. B 62, R16356 (2000)]. Because the electromagnetic fields of these modes decay exponentially in the metal, there are no radiative losses, in contrast to the case of arrays of metallic spheres in air. We suggest that this tight-binding approach to photonic band structures of such metallic inverse materials may be a useful approach for studying photonic crystals containing metallic components, even beyond the quasistatic approximation.

© 2013 OSA

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 21, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 21, 2013
Published: August 16, 2013

Citation
Kwangmoo Kim and D. Stroud, "Photonic band structures of periodic arrays of pores in a metallic host: tight-binding beyond the quasistatic approximation," Opt. Express 21, 19834-19849 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19834


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Q.  Xia, Y. R.  Ying, S. H.  Foulger, “Electric-Field-Induced Rejection-Wavelength Tuning of Photonic-Bandgap Composites,” Adv. Mater. 17, 2463–2467 (2005). [CrossRef]
  2. Kurt  Busch, Sajeev  John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  3. Eli  Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  4. A.  Scherer, O.  Painter, B.  D’Urso, R.  Lee, A.  Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906 (1998). [CrossRef]
  5. Attila  Mekis, J. C.  Chen, I.  Kurland, Shanhui  Fan, Pierre R.  Villeneuve, J. D.  Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides, ” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  6. O.  Painter, R. K.  Lee, A.  Scherer, A.  Yariv, J. D.  O’Brien, P. D.  Dapkus, I.  Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  7. F.  Benabid, J. C.  Knight, G.  Antonopoulos, P. St. J.  Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298, 399–402 (2002). [CrossRef] [PubMed]
  8. Y.  Cao, J. O.  Schenk, M. A.  Fiddy, “Third order nonlinear effect near a degenerate band edge,” Opt. Photonics Lett. 1, 1–7 (2008). [CrossRef]
  9. Arthur R.  McGurn, Alexei A.  Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993). [CrossRef]
  10. V.  Kuzmiak, A. A.  Maradudin, F.  Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994). [CrossRef]
  11. V.  Kuzmiak, A. A.  Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997). [CrossRef]
  12. I. H. H.  Zabel, D.  Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993). [CrossRef]
  13. Mark L.  Brongersma, John W.  Hartman, Harry A.  Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000). [CrossRef]
  14. Stefan A.  Maier, Pieter G.  Kik, Harry A.  Atwater, Sheffer  Meltzer, Elad  Harel, Bruce E.  Koel, Ari A.G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef] [PubMed]
  15. S. A.  Maier, M. L.  Brongersma, P. G.  Kik, S.  Meltzer, A. A. G.  Requicha, H. A.  Atwater, “Plasmonics–A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  16. Prashant K.  Jain, Wenyu  Huang, Mostafa A.  El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  17. LinLin  Zhao, K.  Lance Kelly, George C.  Schatz, “The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width,” J. Phys. Chem. B 107, 7343–7350 (2003). [CrossRef]
  18. Q.-H.  Wei, K.-H.  Su, S.  Durant, X.  Zhang, “Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains,” Nano Lett. 4, 1067–1071 (2004). [CrossRef]
  19. L. A.  Sweatlock, S. A.  Maier, H. A.  Atwater, J. J.  Penninkhof, A.  Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  20. Shengli  Zou, George C.  Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef] [PubMed]
  21. A. F.  Koenderink, Albert  Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  22. Andrea  Alù, Nader  Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  23. Alexandre  Bouhelier, Renaud  Bachelot, Jin Seo  Im, Gary P.  Wiederrecht, Gilles  Lerondel, Sergei  Kostcheev, Pascal  Royer, “Electromagnetic Interactions in Plasmonic Nanoparticle Arrays,” J. Phys. Chem. B 109, 3195–3198 (2005). [CrossRef]
  24. Vadim A.  Markel, Andrey K.  Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007). [CrossRef]
  25. Yu-Rong  Zhen, Kin Hung  Fung, C. T.  Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B 78, 035419 (2008). [CrossRef]
  26. W.  Jacak, J.  Krasnyj, J.  Jacak, A.  Chepok, L.  Jacak, W.  Donderowicz, D. Z.  Hu, D. M.  Schaadt, “Undamped collective surface plasmon oscillations along metallic nanosphere chains,” J. Appl. Phys. 108, 084304 (2010). [CrossRef]
  27. Matthew D.  Arnold, Martin G.  Blaber, Michael J.  Ford, Nadine  Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010). [CrossRef] [PubMed]
  28. Sung Yong  Park, David  Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  29. W. H.  Weber, G. W.  Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  30. D.  Gaillot, T.  Yamashita, C. J.  Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005). [CrossRef]
  31. Ali E.  Aliev, Sergey B.  Lee, Anvar A.  Zakhidov, Ray H.  Baughman, “Superconductivity in Pb inverse opal,” Physica C 453, 15–23 (2007). [CrossRef]
  32. G.  Gantzounis, N.  Stefanou, “Cavity-plasmon waveguides: Multiple scattering calculations of dispersion in weakly coupled dielectric nanocavities in a metallic host material,” Phys. Rev. B 74, 085102 (2006). [CrossRef]
  33. See, e.g.,J. D.  Jackson, “Earth and Ionosphere as a Resonant Cavity: Schumann Resonances,” in Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 374–376.
  34. See, e.g.,N. W.  Ashcroft, N. D.  Mermin, “Problem 2. Tight-Binding p-Bands in Cubic Crystals” & “General remarks on the tight-binding method,” in Solid State Physics (Saunders College Publishing, Orlando, 1976), pp. 189–190& pp. 184–185.
  35. E.  Lidorikis, M. M.  Sigalas, E. N.  Economou, C. M.  Soukoulis, “Tight-Binding Parametrization for Photonic Band Gap Materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  36. N.  Stefanou, A.  Modinos, V.  Yannopapas, “Optical transparency of mesoporous metals,” Solid State Commun. 118, 69–73 (2001). [CrossRef]
  37. B. A.  McKinnon, T. C.  Choy, “Significance of nonorthogonality in tight-binding models,” Phys. Rev. B 52, 14531–14538 (1995). [CrossRef]
  38. Madhu  Menon, K. R.  Subbaswamy, “Transferable nonorthogonal tight-binding scheme for silicon,” Phys. Rev. B 50, 11577–11582 (1994). [CrossRef]
  39. Per-Olov  Löwdin, “On the NonOrthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals,” J. Chem. Phys. 18, 365–375 (1950). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited