OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19885–19899

All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, III, T. Mohsenin, C. J. K. Richardson, and G. M. Carter  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19885-19899 (2013)
http://dx.doi.org/10.1364/OE.21.019885


View Full Text Article

Enhanced HTML    Acrobat PDF (2274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-insensitive (PI) phase-transmultiplexing (PTM) of a 10-Gb/s return-to-zero on-off keying (RZ-OOK) pump and a 10-Gb/s RZ-binary phase-shift keying (RZ-BPSK) probe to 20-Gb/s RZ-quadrature-PSK (RZ-QPSK) has been successfully demonstrated for the first time in a passive, birefringent AlGaAs waveguide, utilizing PI cross-phase modulation (PI-XPM). For differential QPSK (DQPSK)-detection, a 10−9-BER pre-amplified receiver sensitivity penalty of ≈2.5 dB for the in-phase component and ≈4.9 dB for the quadrature component were found. The penalties were relative to the FPGA-precoded RZ-DQPSK baseline for a pump-probe detuning of ≈12 nm, when the probe state of polarization was scrambled and the pump was launched off-axis into the waveguide.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 21, 2013
Revised Manuscript: August 8, 2013
Manuscript Accepted: August 9, 2013
Published: August 16, 2013

Citation
B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter, "All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide," Opt. Express 21, 19885-19899 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol.12(11), 1916–1920 (1994). [CrossRef]
  2. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993). [CrossRef]
  3. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005). [CrossRef]
  4. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005). [CrossRef] [PubMed]
  5. J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008). [CrossRef]
  6. T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005). [CrossRef]
  7. A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006). [CrossRef]
  8. A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference On (2007), pp. 1 –2.
  9. W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express16(16), 12039–12049 (2008). [CrossRef] [PubMed]
  10. B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013). [CrossRef]
  11. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express18(10), 9961–9966 (2010). [CrossRef] [PubMed]
  12. M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express20(15), 16374–16380 (2012). [CrossRef]
  13. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010). [CrossRef]
  14. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009). [CrossRef] [PubMed]
  15. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010). [CrossRef]
  16. J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010). [CrossRef]
  17. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  18. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian H Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express19(21), 19886–19894 (2011). [CrossRef] [PubMed]
  19. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000). [CrossRef]
  20. J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).
  21. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997). [CrossRef]
  22. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express19(13), 12440–12455 (2011). [CrossRef] [PubMed]
  23. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett.35(24), 4093–4095 (2010). [CrossRef] [PubMed]
  24. W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010). [CrossRef]
  25. W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011). [CrossRef]
  26. J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing and self-phase modulation in a bandgap-engineered AlGaAs waveguide,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), Paper CW1A.4. (2012).
  27. M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3. [CrossRef]
  28. E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987). [CrossRef]
  29. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008). [CrossRef]
  30. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992). [CrossRef]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  32. P. J. Winzer and A. Kalmar, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Lightwave Technol.17(2), 171–177 (1999). [CrossRef]
  33. P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991). [CrossRef]
  34. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans,” J. Lightwave Technol.22(1), 203–207 (2004). [CrossRef]
  35. J. Proakis, Digital Communications, 4th ed. (McGraw-Hill Science/Engineering/Math, 2000).
  36. J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004). [CrossRef]
  37. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol.21(9), 1887–1891 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3318 KB)     
» Media 2: AVI (3093 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited