OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19951–19965

VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines

O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19951-19965 (2013)
http://dx.doi.org/10.1364/OE.21.019951


View Full Text Article

Enhanced HTML    Acrobat PDF (10550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first application of a vertical-cavity surface-emitting laser (VCSEL) for calibration- and sampling-free, high-speed, in situ H2O concentration measurements in IC engines using direct TDLAS (tunable diode laser absorption spectroscopy). Measurements were performed in a single-cylinder research engine operated under motored conditions with a time resolution down to 100 μs (i.e., 1.2 crank angle degrees at 2000 rpm). Signal-to-noise ratios (1σ) up to 29 were achieved, corresponding to a H2O precision of 0.046 vol.% H2O or 39 ppm·m. The modulation frequency dependence of the performance was investigated at different engine operating points in order to quantify the advantages of VCSEL against DFB lasers.

© 2013 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 5, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: July 15, 2013
Published: August 16, 2013

Citation
O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, "VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines," Opt. Express 21, 19951-19965 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-19951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Quader and R. F. Majkowski, „Cycle-by-cycle mixture strength and residual-gas measurements during cold starting“, SAE Technical Paper 1999-01-1107 (1999).
  2. T. Toda, H. Nohira, and K. Kobashi, „Evaluation of burned gas ratio (BGR) as a predominant factor to NOx“, SAE Technical Paper 760765 (1976).
  3. M. J. Cottereau, F. Grisch, and J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B51(1), 63–66 (1990). [CrossRef]
  4. S. A. Kaiser, M. Schild, and C. Schulz, “Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence,” Proc. Combust. Inst.34(2), 2911–2919 (2013). [CrossRef]
  5. D. A. Rothamer, J. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B99(1-2), 371–384 (2010). [CrossRef]
  6. C. L. Hagen and S. T. Sanders, “Investigation of multi-species (H2O2 and H2O) sensing and thermometry in an HCCI engine by wavelength-agile absorption spectroscopy,” Meas. Sci. Technol.18(7), 1992–1998 (2007). [CrossRef]
  7. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31(1), 791–798 (2007). [CrossRef]
  8. N. Kawahara, E. Tomita, A. Ohtsuki, and Y. Aoyagi, “Cycle-resolved residual gas concentration measurement inside a heavy-duty diesel engine using infrared laser absorption,” Proc. Combust. Inst.33(2), 2903–2910 (2011). [CrossRef]
  9. T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame,” Appl. Phys. B79(4), 427–430 (2004). [CrossRef]
  10. L. de Francqueville, B. Thirouard, and V. Ricordeau, „Measurement of Residual Gas Fraction Using IR Absorption“, SAE Technical Paper 2006-01-3337 (2006).
  11. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 µm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol.14(8), 1350–1356 (2003). [CrossRef]
  12. S. Karagiannopoulos, E. Cheadle, P. Wright, S. Tsekenis, and H. McCann, “Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers,” Appl. Opt.51(34), 8057–8067 (2012). [CrossRef] [PubMed]
  13. J. B. Jeffries, J. M. Porter, S. H. Pyun, R. K. Hanson, K. R. Sholes, K. Shouji, and T. Chaya, “An in-cylinder laser absorption sensor for crank-angle-resolved measurements of gasoline concentration and temperature,” SAE Technical Paper 2010–01–2251 (2010). [CrossRef]
  14. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009). [CrossRef] [PubMed]
  15. C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Handbook of experimental fluid mechanics, C. Tropea, A. L. Yarin, J. F. Foss, ed. (Springer, 2007).
  16. V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical measurements-techniques and applications (Springer, 2001).
  17. B. Buchholz, B. Kühnreich, H. Smit, and V. Ebert, “Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison,” Appl. Phys. B110(2), 249–262 (2013). [CrossRef]
  18. J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of analytical chemistry, R. A. Meyers, ed. (Chichester, John Wiley & Sons, Ltd, 2006).
  19. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009). [CrossRef]
  20. P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, and V. Ebert, “Absolute diode laser-based in situ detection of HCl in gasification processes,” Exp. Fluids49(4), 961–968 (2010). [CrossRef]
  21. H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt.42(12), 2043–2051 (2003). [CrossRef] [PubMed]
  22. O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109(3), 521–532 (2012). [CrossRef]
  23. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, and J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 µm with up to 5 MHz repetition rate,” Meas. Sci. Technol.14(1), 101–106 (2003). [CrossRef]
  24. P. Ortwein, W. Woiwode, S. Wagner, M. Gisi, and V. Ebert, “Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa,” Appl. Phys. B100(2), 341–347 (2010). [CrossRef]
  25. J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011). [CrossRef]
  26. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B72(7), 865–872 (2001). [CrossRef]
  27. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B92(3), 393–401 (2008). [CrossRef]
  28. A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, liquid water in a dense water mist environment,” Proc. Combust. Inst.31(1), 799–806 (2007). [CrossRef]
  29. A. Mangold, R. Wagner, H. Saathoff, U. Schurath, C. Giesemann, V. Ebert, M. Krämer, and O. Möhler, “Experimental investigation of ice nucleation by different types of aerosols in the aerosol chamber AIDA: implications to microphysics of cirrus clouds,” Meteorologische Zeitschrift14(4), 485–497 (2005). [CrossRef]
  30. S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptions-linien im 1,4 µm-Band,” VDI Ber.1959, 149–164 (2006).
  31. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  32. J. H. Lambert, Lamberts Photometrie: Photometria (Sive de mensura et gradibus luminis, Colorum Et Umbrae (1760), Volume 2. Nabu Press, 2010).
  33. J. D. Dymond, R. C. Wilhoit, and K. N. Marsh, Virial Coefficients of Pure Gases and Mixtures (Springer, 2003).
  34. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf.8(6), 1379–1384 (1968). [CrossRef]
  35. J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” in Numerical Analysis, (G. A. Watson, Springer, 1978).
  36. G. P. Merker, Combustion Engines Development: Mixture Formation, Combustion, Emissions and Simulation (Springer, 2012).
  37. R. A. Toth, “Linelists of water vapor parameters from 500 to 8000 cm−1,” see http://mark4sun.jpl.nasa.gov/ h2o.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited