OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 19972–19981

Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast

Weining Man, Marian Florescu, Kazue Matsuyama, Polin Yadak, Geev Nahal, Seyed Hashemizad, Eric Williamson, Paul Steinhardt, Salvatore Torquato, and Paul Chaikin  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 19972-19981 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

© 2013 OSA

OCIS Codes
(160.0160) Materials : Materials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: June 26, 2013
Revised Manuscript: August 3, 2013
Manuscript Accepted: August 7, 2013
Published: August 16, 2013

Weining Man, Marian Florescu, Kazue Matsuyama, Polin Yadak, Geev Nahal, Seyed Hashemizad, Eric Williamson, Paul Steinhardt, Salvatore Torquato, and Paul Chaikin, "Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast," Opt. Express 21, 19972-19981 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater.22(26-27), 2939–2944 (2010). [CrossRef] [PubMed]
  4. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006). [CrossRef]
  5. I. El-Kady, M. M. Reda Taha, and M. F. Su, “Application of photonic crystals in submicron damage detection and quantification,” Appl. Phys. Lett.88(25), 253109 (2006). [CrossRef]
  6. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett.90(12), 123901 (2003). [CrossRef] [PubMed]
  7. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett.80(5), 956–959 (1998). [CrossRef]
  8. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature436(7053), 993–996 (2005). [CrossRef] [PubMed]
  9. M. C. Rechtsman, H.-C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized structures for photonic quasicrystals,” Phys. Rev. Lett.101(7), 073902 (2008). [CrossRef] [PubMed]
  10. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012). [PubMed]
  11. K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond Structure with a 3D photonic band gap,” Phys. Rev. Lett.100(1), 013901 (2008). [CrossRef] [PubMed]
  12. S. Imagawa, K. Edagawa, K. Morita, T. Niino, Y. Kagawa, and M. Notomi, “Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures,” Phys. Rev. B82(11), 115116 (2010). [CrossRef]
  13. M. Florescu, S. Torquato, and P. J. Steinhardt, “Designer disordered materials with large, complete photonic band gaps,” Proc. Natl. Acad. Sci. U.S.A.106(49), 20658–20663 (2009). [CrossRef] [PubMed]
  14. W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad, B. Y.C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J. Steinhardt, “Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids, ” (unpublished. under review with Proc. Natl. Acad. Sci.).
  15. A. A. Chabanov and A. Z. Genack, “Photon Localization in Resonant Media,” Phys. Rev. Lett.87(15), 153901 (2001). [CrossRef] [PubMed]
  16. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B61(20), 13458–13464 (2000). [CrossRef]
  17. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and C. M. de Sterke, “Effects of geometric and refractive index disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E. 62(44 Pt B), 5711–5720 (2000). [CrossRef] [PubMed]
  18. M. A. Kaliteevski, J. M. Martinez, D. Cassagne, and J. P. Albert, “Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal,” Phys. Rev. B66(11), 113101 (2002). [CrossRef]
  19. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys.94(8), 4757–4762 (2003). [CrossRef]
  20. Y. Su, G. T. Fei, Y. Zhang, H. Li, P. Yan, G. L. Shang, and L. D. Zhang, “Anodic alumina photonic crystal heterostructures,” J. Opt. Soc. Am. B28(12), 2931–2933 (2011). [CrossRef]
  21. M. M. Rahman, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands of two-dimensional quasi-random structures based on macroporous silicon,” Phys. Status Solidi. C8(3), 1066–1070 (2011). [CrossRef]
  22. S. Torquato and F. H. Stillinger, “Local density fluctuations, hyperuniformity, and order metrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(4), 041113 (2003). [CrossRef] [PubMed]
  23. C. E. Zachary and S. Torquato, “Hyperuniformity in Point Patterns and Two-Phase Random Heterogeneous Media,” J. Stat. Mech.2009(12), 12015 (2009). [CrossRef]
  24. R. Batten, F. H. Stillinger, and S. Torquato, “Classical disordered ground states: super ideal gases, and stealth and equi-luminous materials,” J. Appl. Phys.104(3), 033504 (2008). [CrossRef]
  25. M. Florescu, S. Torquato, and P. J. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B80(15), 155112 (2009). [CrossRef]
  26. X. C. Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, “Effective-medium theory for weakly nonlinear composites,” Phys. Rev. B Condens. Matter38(15), 10970–10973 (1988). [CrossRef] [PubMed]
  27. M. Florescu, P. J. Steinhardt, and S. Torquato, “Optical cavities and waveguides in hyperuniform disordered photonic solids,” Phys. Rev. B87(16), 165116 (2013). [CrossRef]
  28. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Mead, Photonic Crystals: Molding the Flow of Light, 2nd Edition. (Princeton University, 2008), pp. 75 and pp. 243–248.
  29. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  30. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett.94(18), 183903 (2005). [CrossRef] [PubMed]
  31. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  32. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013). [CrossRef]
  33. W. Man, M. Florescu, K. Matsuyama, P. Yadak, S. Torquato, P. J. Steinhardt, and P. Chaikin, “Experimental observation of photonic bandgaps in Hyperuniform disordered materials,” presented at the Conference on Lasers and Electro-Optics, San Jose, United States, 16–21 May. 2010. [CrossRef]
  34. J. Duplat, B. Bossa, and E. Villermaux, “On two-dimensional foam ageing,” J. Fluid Mech.673, 147–179 (2011). [CrossRef]
  35. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999). [CrossRef]
  36. Y. B. Guo, C. Divin, A. Myc, F. L. Terry, J. R. Baker, T. B. Norris, and J. Y. Ye, “Sensitive molecular binding assay using a photonic crystal structure in total internal reflection,” Opt. Express16(16), 11741–11749 (2008). [CrossRef] [PubMed]
  37. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000). [CrossRef] [PubMed]
  38. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin film light emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited