OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20023–20031

DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications

Karol Krzempek, Grzegorz Sobon, and Krzysztof M. Abramski  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20023-20031 (2013)
http://dx.doi.org/10.1364/OE.21.020023


View Full Text Article

Enhanced HTML    Acrobat PDF (2695 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact mid-infrared (mid-IR) radiation source based on difference frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystal. The system incorporates a dual-wavelength master oscillator power amplifier (MOPA) source capable of simultaneous amplification of 1064 nm and 1548 nm signals in a common active fiber co-doped with erbium and ytterbium ions. Two low-power seed lasers were amplified by a factor of 14.4 dB and 23.7 dB for 1064 nm and 1548 nm, respectively and used in a nonlinear DFG setup to generate 1.14 mW of radiation centered at 3.4 μm. The system allowed for open-path detection of methane (CH4) in ambient air with estimated minimum detectable concentration at a level of 26 ppbv.

© 2013 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Spectroscopy

History
Original Manuscript: May 10, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 21, 2013
Published: August 19, 2013

Citation
Karol Krzempek, Grzegorz Sobon, and Krzysztof M. Abramski, "DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications," Opt. Express 21, 20023-20031 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).
  2. K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012). [CrossRef]
  3. C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011). [CrossRef]
  4. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010). [CrossRef]
  5. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008). [CrossRef]
  6. M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011). [CrossRef] [PubMed]
  7. R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011). [CrossRef]
  8. F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources). [CrossRef]
  9. D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998). [CrossRef]
  10. S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002). [CrossRef]
  11. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008). [CrossRef]
  12. L. Goldberg, D. G. Lancaster, J. Koplow, R. F. Curl, and F. K. Tittel, “Mid-IR DFG source pumped by a 1.1 μm/1.5 μm dual wavelength fiber amplifier for trace gas detection,” Opt. Lett.23, 1517–1519 (1998). [CrossRef] [PubMed]
  13. J. Chang, Q. Mao, S. Feng, X. Gao, and C. Xu, “Widely tunable mid-IR difference-frequency generation based on fiber lasers,” Opt. Lett.35(20), 3486–3488 (2010). [CrossRef] [PubMed]
  14. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011). [CrossRef]
  15. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011). [CrossRef] [PubMed]
  16. V. Kuhn, P. Wessels, J. Neumann, and D. Kracht, “Stabilization and power scaling of cladding pumped Er:Yb-codoped fiber amplifier via auxiliary signal at 1064 nm,” Opt. Express17(20), 18304–18311 (2009). [CrossRef] [PubMed]
  17. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Dependence of Er:Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength,” Opt. Lett.35(24), 4105–4107 (2010). [CrossRef] [PubMed]
  18. Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).
  19. D. Richter, B. Wert, A. Fried, P. Weibring, J. Walega, J. White, B. Vaughn, and F. K. Tittel, “High precision carbon dioxide isotope spectrometer with a difference frequency generation laser source,” Opt. Lett.34, 172–174 (2009). [CrossRef] [PubMed]
  20. http://hitran.iao.ru
  21. I. Armstrong, W. Johnstone, K. Duffin, M. Lengden, A. Chakraborty, and K. Ruxton, “Detection of CH4 in the mid-IR using difference frequency generation with tunable diode laser spectroscopy,” J. Lightwave Technol.28(10), 1435–1442 (2010). [CrossRef]
  22. S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited