OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20090–20095

Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity

Zinan Wang, Han Wu, Mengqiu Fan, Yunjiang Rao, Xinhong Jia, and Weili Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20090-20095 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Third-order random lasing operating in 1670nm spectral band is experimentally demonstrated for the first time to the best of our knowledge, with only 2.45W pump threshold. The lasing cavity is formed by G.652 fiber and fiber loop mirrors (FLMs), while the former acts as the distributed reflector and the latter acts as the point reflector. The G.652 fiber and the FLMs are connected via a multi-band wavelength-division-multiplexer, which ensures each of the three Raman Stokes components generated in the long fiber is routed to one FLM and then reflected back with minimum loss. Unlike existing half-open random lasing cavities using fiber Bragg gratings, the reflection bandwidth of FLMs is wide enough to preserve the intrinsic spectral features of each lasing bands, providing a valuable platform to study the mechanism of high-order random lasing in fibers. Also, the reflection efficiency can be treated as an invariant as the pump power grows, significantly reducing the threshold of high-order random lasing. The stationary model is used to calculate the output power, and the results fit the experimental data well.

© 2013 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 28, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: August 15, 2013
Published: August 19, 2013

Zinan Wang, Han Wu, Mengqiu Fan, Yunjiang Rao, Xinhong Jia, and Weili Zhang, "Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity," Opt. Express 21, 20090-20095 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  2. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  3. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010). [CrossRef] [PubMed]
  4. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011). [CrossRef]
  5. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  6. X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013). [CrossRef] [PubMed]
  7. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012). [CrossRef] [PubMed]
  8. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express19(12), 11906–11915 (2011). [CrossRef] [PubMed]
  9. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012). [CrossRef] [PubMed]
  10. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  11. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012). [CrossRef]
  12. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011). [CrossRef] [PubMed]
  13. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012). [CrossRef] [PubMed]
  14. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012). [CrossRef] [PubMed]
  15. H. Wu, Z. N. Wang, X. H. Jia, P. Y. Li, M. Q. Fan, Y. Li, and Y. Y. Zhu, “Flat amplitude multiwavelength Brillouin-Raman random fiber laser with a half-open cavity,” Appl. Phys. B. in press.
  16. S. B. Papernyi, V. B. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, (6–11 March 2005, Anaheim, CA, USA, 2005), paper OThF4.
  17. S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express15(24), 16035–16043 (2007). [CrossRef] [PubMed]
  18. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited