OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20111–20118

Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals

Yoshinori Tanaka, Yosuke Kawamoto, Masayuki Fujita, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20111-20118 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Solar Energy

Original Manuscript: April 9, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: August 5, 2013
Published: August 20, 2013

Yoshinori Tanaka, Yosuke Kawamoto, Masayuki Fujita, and Susumu Noda, "Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals," Opt. Express 21, 20111-20118 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2007)
  2. E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  3. H. W.  Deckman, C. B.  Roxlo, E.  Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8(9), 491–493 (1983). [CrossRef] [PubMed]
  4. S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  5. S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001). [CrossRef] [PubMed]
  6. M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005). [CrossRef] [PubMed]
  7. Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007). [CrossRef] [PubMed]
  8. M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012). [CrossRef]
  9. M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999). [CrossRef]
  10. E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006). [CrossRef] [PubMed]
  11. H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008). [CrossRef] [PubMed]
  12. H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008). [CrossRef]
  13. Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010). [CrossRef]
  14. P.  Bermel, C.  Luo, L.  Zeng, L. C.  Kimerling, J. D.  Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  15. Y.  Park, E.  Drouard, O.  El Daif, X.  Letartre, P.  Viktorovitch, A.  Fave, A.  Kaminski, M.  Lemiti, C.  Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  16. S. B.  Mallick, M.  Agrawal, P.  Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  17. A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012). [CrossRef]
  18. H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012). [CrossRef]
  19. A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited