OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20179–20186

Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency

Xiaoyan Zhou, Lin Zhang, Andrea M. Armani, Raymond G. Beausoleil, Alan E. Willner, and Wei Pang  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20179-20186 (2013)
http://dx.doi.org/10.1364/OE.21.020179


View Full Text Article

Enhanced HTML    Acrobat PDF (2550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupled microresonators exhibit great potential for nonlinear applications. In the present work, we explore the nonlinear performance of an embedded ring resonator analogous to an electromagnetically induced transparency (EIT) medium, also known as coupled resonator induced transparency (CRIT). Interestingly, an EIT-like amplitude response can have a remarkably different power enhancement factor that varies by more than one order of magnitude, which is attributed to the different phase regimes of the embedded micro-ring resonators. In addition to the non-monotonic phase profile reported in atomic EIT systems, the phase responses featuring 2π and 4π monotonic transitions are identified and analyzed. We also present an interesting phenomenon, in which the power enhancement changes greatly, even with the same transfer function (both intensity and phase responses). This reveals that wisely choosing the operating regime is critical to optimize nonlinear performance of the embedded double resonator system, without adding to design or fabrication difficulty.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

History
Original Manuscript: June 26, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: August 15, 2013
Published: August 20, 2013

Citation
Xiaoyan Zhou, Lin Zhang, Andrea M. Armani, Raymond G. Beausoleil, Alan E. Willner, and Wei Pang, "Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency," Opt. Express 21, 20179-20186 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20179


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. B. Matsko, Practical applications of microresonators in optics and photonics (CRC Press, 2009).
  2. I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic microresonator research and applications. (Springer, 2010).
  3. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012). [CrossRef] [PubMed]
  4. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  5. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003). [CrossRef]
  6. L. Maleki, A. A. Savchenkov, A. B. Matsko, and V. S. Ilchenko, “Tunable filters and time delays with coupled whispering gallery mode resonators,” Proc. SPIE5435, 178–186 (2004). [CrossRef]
  7. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006). [CrossRef] [PubMed]
  8. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81(22), 9499–9506 (2009). [CrossRef] [PubMed]
  9. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in Coherent Media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  10. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett.11(11), 1426–1428 (1999). [CrossRef]
  11. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007). [CrossRef]
  12. J. Scheuer, A. A. Sukhorukov, and Y. S. Kivshar, “All-optical switching of dark states in nonlinear coupled microring resonators,” Opt. Lett.35(21), 3712–3714 (2010). [CrossRef] [PubMed]
  13. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004). [CrossRef]
  14. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett.98(21), 213904 (2007). [CrossRef] [PubMed]
  15. X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express15(21), 13557–13573 (2007). [CrossRef] [PubMed]
  16. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett.33(17), 1978–1980 (2008). [CrossRef] [PubMed]
  17. C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett.101(2), 021110 (2012). [CrossRef]
  18. L. Zhang, J.-Y. Yang, Y. Li, M. Song, R. G. Beausoleil, and A. E. Willner, “Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings,” Opt. Lett.33(13), 1428–1430 (2008). [CrossRef] [PubMed]
  19. R. A. Integlia, L. Yin, D. Ding, D. Z. Pan, D. M. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19(16), 14892–14902 (2011). [CrossRef] [PubMed]
  20. Y. Chen and S. Blair, “Nonlinear phase shift of cascaded microring resonators,” J. Opt. Soc. Am. B20(10), 2125–2132 (2003). [CrossRef]
  21. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000). [CrossRef]
  23. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett.33(17), 1978–1980 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited