OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20210–20219

The metal grating design of plasmonic hybrid III-V/Si evanescent lasers

Min-Hsiang Hsu, Chien-Chung Lin, and Hao-Chung Kuo  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20210-20219 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4060 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid III-V/silicon laser design with a metal grating layer inserted in between is proposed and numerically studied. The metal grating layer is buried in a silicon ridge waveguide surrounded by silicon dioxide, and its structural parameters such as periodicity, width and depth can be varied for optimization purpose. The plasmonic effect originated from the grating layer can manage optical fields between III-V and silicon layers in hopes of dimension reduction. The substrate is planarized to minimize the bonding failure. A numerical algorithm with various combinations of metal grating and waveguide structural parameters was created and the optimal design with 730 nm grating period and 600 nm of buried waveguide ridge height was obtained by minimizing the corresponding laser threshold. With top AlInGaAs quantum wells and optimized design of hybrid metal/silicon waveguide, a 0.6 μm−1 threshold gain can be achieved.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 9, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 25, 2013
Published: August 21, 2013

Min-Hsiang Hsu, Chien-Chung Lin, and Hao-Chung Kuo, "The metal grating design of plasmonic hybrid III-V/Si evanescent lasers," Opt. Express 21, 20210-20219 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  2. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  3. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  5. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006). [CrossRef]
  6. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  7. R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011). [CrossRef]
  8. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  9. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express20(21), 23456–23462 (2012). [CrossRef] [PubMed]
  10. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008). [CrossRef] [PubMed]
  11. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett.34(9), 1345–1347 (2009). [CrossRef] [PubMed]
  12. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010). [CrossRef]
  13. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010). [CrossRef] [PubMed]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  15. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002). [CrossRef]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  17. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, “Modal gain, modal loss, and confinement factors,” in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (John Wiley & Sons, 2012).
  18. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, “Optical properties of materials, nonlinear optics, quatum optics” in Handbook of Optics third edition, (McGraw-Hill Professional, New York, 2009).
  19. H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (1994), vol. 2 pp. 349–350.
  20. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1-3), 95–102 (1999). [CrossRef]
  21. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34(22), 4755–4767 (1995). [CrossRef] [PubMed]
  22. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  23. G. Veronic and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007). [CrossRef]
  24. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  25. A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express20(7), 7685–7693 (2012). [CrossRef] [PubMed]
  26. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  27. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  28. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  29. J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986). [CrossRef]
  30. C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited