OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20254–20259

Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching

Thomas Maier, David Bach, Paul Müllner, Rainer Hainberger, and Hubert Brückl  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20254-20259 (2013)
http://dx.doi.org/10.1364/OE.21.020254


View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(110.4235) Imaging systems : Nanolithography
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Solar Energy

History
Original Manuscript: April 9, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: July 11, 2013
Published: August 22, 2013

Citation
Thomas Maier, David Bach, Paul Müllner, Rainer Hainberger, and Hubert Brückl, "Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching," Opt. Express 21, 20254-20259 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012). [CrossRef]
  2. S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011). [CrossRef]
  3. G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000). [CrossRef]
  4. C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).
  5. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982). [CrossRef]
  6. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  8. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997). [CrossRef]
  9. S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010). [CrossRef] [PubMed]
  10. G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007). [CrossRef]
  11. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  12. Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010). [CrossRef]
  13. K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009). [CrossRef]
  14. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010). [CrossRef] [PubMed]
  15. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006). [CrossRef]
  16. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  17. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000). [CrossRef]
  18. M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:. [CrossRef]
  19. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982). [CrossRef]
  20. J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003). [CrossRef]
  21. H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited