OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20291–20302

Lasing in plasmon-induced transparency nanocavity

Zi-Lan Deng and Jian-Wen Dong  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20291-20302 (2013)
http://dx.doi.org/10.1364/OE.21.020291


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a plasmon-induced transparency (PIT) nanocavity for achieving nanoscopic coherent light source. The compact cavity is constructed by a pair of detuned nano-stubs incorporated with four-level gain medium. The PIT response enables the reduction of the coupling loss from cavity to waveguide while keeping the cavity size unchanged, different from the end-facet Fabry-Pérot cavity in which the radiation loss decreases at the cost of size increment. In order to study the lasing behavior of surface plasmon wave in the PIT cavity, the self-consistent finite element method is employed to model the interactions between gain and propagating surface plasmons. The dynamics of the whole lasing process is observed, and the linear output-input relation is obtained for the single mode plasmon lasing. It is demonstrated that smaller stub-pair detuning provides stronger feedback inside the cavity. Consequently, the lasing threshold of pumping rate decreases quadratically with the decreasing of detuning. However, the output-input extraction efficiency will improve when the detuning is not so small. One of the advantages for the proposal is that the lasing output power from the cavity can directly couple towards the metal-dielectric-metal waveguide platform, facilitating the field of integrated plasmonic circuits and molecular-scale coherent light source.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3460) Lasers and laser optics : Lasers
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 3, 2013
Revised Manuscript: August 11, 2013
Manuscript Accepted: August 16, 2013
Published: August 22, 2013

Citation
Zi-Lan Deng and Jian-Wen Dong, "Lasing in plasmon-induced transparency nanocavity," Opt. Express 21, 20291-20302 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011). [CrossRef]
  2. R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  3. M. T.  Hill, M.  Marell, E. S. P.  Leong, B.  Smalbrugge, Y.  Zhu, M.  Sun, P. J.  van Veldhoven, E. J.  Geluk, F.  Karouta, Y.-S.  Oei, R.  Nötzel, C.-Z.  Ning, M. K.  Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  4. S.-W.  Chang, T.-R.  Lin, S. L.  Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010). [CrossRef] [PubMed]
  5. Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012). [CrossRef] [PubMed]
  6. M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). [CrossRef] [PubMed]
  7. M. J. H.  Marell, B.  Smalbrugge, E. J.  Geluk, P. J.  van Veldhoven, B.  Barcones, B.  Koopmans, R.  Nötzel, M. K.  Smit, M. T.  Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19(16), 15109–15118 (2011). [CrossRef] [PubMed]
  8. R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  9. R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013). [CrossRef]
  10. P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]
  11. S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011). [CrossRef]
  12. Z.  Han, S. I.  Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  13. Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011). [CrossRef]
  14. X.  Piao, S.  Yu, N.  Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012). [CrossRef] [PubMed]
  15. G.  Wang, H.  Lu, X.  Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012). [CrossRef] [PubMed]
  16. N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  17. Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010). [CrossRef]
  18. Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013). [CrossRef]
  19. A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010). [CrossRef]
  20. A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009). [CrossRef]
  21. A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010). [CrossRef]
  22. A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011). [CrossRef] [PubMed]
  23. Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012). [CrossRef] [PubMed]
  24. S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010). [CrossRef] [PubMed]
  25. J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011). [CrossRef] [PubMed]
  26. S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011). [CrossRef] [PubMed]
  27. A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012). [CrossRef] [PubMed]
  28. S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012). [CrossRef]
  29. C.  Fietz, C. M.  Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20(10), 11548–11560 (2012). [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science Books, 1986).
  31. Y.  Matsuzaki, T.  Okamoto, M.  Haraguchi, M.  Fukui, M.  Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1012 KB)     
» Media 2: AVI (2045 KB)     
» Media 3: AVI (1955 KB)     
» Media 4: AVI (2022 KB)     
» Media 5: AVI (1815 KB)     
» Media 6: AVI (1012 KB)     
» Media 7: AVI (1955 KB)     
» Media 8: AVI (2022 KB)     
» Media 9: AVI (1815 KB)     
» Media 10: AVI (2045 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited