OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20313–20321

Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network

Hung Nguyen Tan, Takashi Inoue, Takayuki Kurosu, and Shu Namiki  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20313-20321 (2013)
http://dx.doi.org/10.1364/OE.21.020313


View Full Text Article

Enhanced HTML    Acrobat PDF (2769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose the use of Nyquist OTDM-WDM signal for highly efficient, fully elastic all-optical networks. With the possibility of generation of ultra-coarse yet flexible granular channels, Nyquist OTDM-WDM can eliminate guard-bands in conventional WDM systems, and hence improves the spectral efficiency in network perspective. In this paper, transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM channels from 43 Gbaud to dual-polarization 344 Gbaud are successfully demonstrated over 320 km fiber link with four FlexGrid-compatible WSS nodes. A stable clock recovery is also carried out for different baudrate Nyquist OTDMs by optical null-header insertion technique.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 11, 2013
Revised Manuscript: August 8, 2013
Manuscript Accepted: August 10, 2013
Published: August 22, 2013

Citation
Hung Nguyen Tan, Takashi Inoue, Takayuki Kurosu, and Shu Namiki, "Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network," Opt. Express 21, 20313-20321 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.  Gantz, D.  Reinsel, “The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east,” IDC IVIEW, sponsored by EMC Corporation, 1–16 (2012), http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf .
  2. IEEE 802.3 Ethernet Working Group, “400 gigabit Ethernet call-for-interest consensus,” IEEE 802 (2013), http://www.ieee802.org/3/cfi/0313_1/CFI_01_0313.pdf .
  3. O.  Gerstel, M.  Jinno, A.  Lord, S. J. B.  Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012). [CrossRef]
  4. A. E.  Willner, O. F.  Yilmaz, J.  Wang, X.  Wu, A.  Bogoni, L.  Zhang, S. R.  Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011). [CrossRef]
  5. S.  Namiki, T.  Kurosu, K.  Tanizawa, J.  Kurumida, T.  Hasama, H.  Ishikawa, T.  Nakatogawa, M.  Nakamura, K.  Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011). [CrossRef]
  6. M.  Nakazawa, T.  Hirooka, P.  Ruan, P.  Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012). [CrossRef] [PubMed]
  7. G.  Bosco, A.  Carena, V.  Curri, P.  Poggiolini, F.  Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]
  8. G.  Bosco, V.  Curri, A.  Carena, P.  Poggiolini, F.  Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011). [CrossRef]
  9. T.  Hirooka, P.  Ruan, P.  Guan, M.  Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012). [CrossRef] [PubMed]
  10. K.  Harako, P.  Ruan, T.  Hirooka, M.  Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38. [CrossRef]
  11. H.  Hu, J.  Wang, H.  Ji, E.  Palushani, M.  Galili, H. C. H.  Mulvad, P.  Jeppesen, L. K.  Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61. [CrossRef]
  12. H.  Hu, D.  Kong, E.  Palushani, J. D.  Andersen, A.  Rasmussen, B. M.  Sorensen, M.  Galili, H. C. H.  Mulvad, K. J.  Larsen, S.  Forchhammer, P.  Jeppesen, L. K.  Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5. [CrossRef]
  13. H.  Nguyen Tan, T.  Inoue, S.  Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50. [CrossRef]
  14. H.  Nguyen Tan, K.  Tanizawa, T.  Inoue, T.  Kurosu, Shu  Namiki, “No-guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17) (4), 3287–3290(2013).
  15. T.  Inoue, S.  Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008). [CrossRef]
  16. G.  Baxter, S.  Frisken, D.  Abakoumov, H.  Zhou, I.  Clarke, A.  Bartos, S.  Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2. [CrossRef]
  17. T.  Kurosu, K.  Tanizawa, D.  Wang, S. Y.  Set, S.  Namiki, “Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation,” Opt. Express 21(4), 4447–4455 (2013). [CrossRef] [PubMed]
  18. P.  Guan, H. C. H.  Mulvad, K.  Kasai, T.  Hirooka, M.  Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010). [CrossRef]
  19. N.  Calabretta, J.  Luo, J.  Parra-Cetina, S.  Latkowski, R.  Maldonado-Basilio, P.  Landais, H. J. S.  Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5. [CrossRef]
  20. J.  Proakis, M.  Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited