OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20363–20375

The ratio of the kinetic inductance to the geometric inductance: a key parameter for the frequency tuning of the THz semiconductor split-ring resonator

Jiawei Cong, Binfeng Yun, and Yiping Cui  »View Author Affiliations

Optics Express, Vol. 21, Issue 17, pp. 20363-20375 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By introducing the frequency tuning sensitivity, an analytical model based on equivalent LC circuit is developed for the relative frequency tuning range of THz semiconductor split-ring resonator (SRR). And the model reveals that the relative tuning range is determined by the ratio of the kinetic inductance to the geometric inductance (RKG). The results show that under the same carrier density variation, a larger RKG results in a larger relative tuning range. Based on this model, a stacked SRR-dimer structure with larger RKG compared to the single SRR due to the inductive coupling is proposed, which improves the relative tuning range effectively. And the results obtained by the simple analytical model agree well with the numerical FDTD results. The presented analytical model is robust and can be used to analyze the relative frequency tuning of other tunable THz devices.

© 2013 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: June 17, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 7, 2013
Published: August 22, 2013

Jiawei Cong, Binfeng Yun, and Yiping Cui, "The ratio of the kinetic inductance to the geometric inductance: a key parameter for the frequency tuning of the THz semiconductor split-ring resonator," Opt. Express 21, 20363-20375 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010). [CrossRef] [PubMed]
  2. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011). [CrossRef] [PubMed]
  3. J. W. Cong, B. F. Yun, and Y. P. Cui, “Negative-index metamaterial at visible frequencies based on high order plasmon resonance,” Appl. Opt.51(13), 2469–2476 (2012). [CrossRef] [PubMed]
  4. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011). [CrossRef] [PubMed]
  5. P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012). [CrossRef]
  6. V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009). [CrossRef] [PubMed]
  7. V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010). [CrossRef] [PubMed]
  8. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011). [CrossRef] [PubMed]
  9. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37(3), 308–310 (2012). [CrossRef] [PubMed]
  10. C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express18(5), 4838–4844 (2010). [CrossRef] [PubMed]
  11. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012). [CrossRef] [PubMed]
  12. T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express21(6), 7577–7582 (2013). [CrossRef] [PubMed]
  13. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011). [CrossRef] [PubMed]
  14. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  15. J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011). [CrossRef] [PubMed]
  16. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010). [CrossRef] [PubMed]
  17. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008). [CrossRef]
  18. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011). [CrossRef] [PubMed]
  19. L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013). [CrossRef]
  20. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009). [CrossRef]
  21. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010). [CrossRef]
  22. J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express16(19), 14390–14396 (2008). [CrossRef] [PubMed]
  23. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011). [CrossRef] [PubMed]
  24. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011). [CrossRef] [PubMed]
  25. J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013). [CrossRef]
  26. G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995). [CrossRef]
  27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  28. V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005)
  30. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011). [CrossRef]
  31. S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996). [CrossRef]
  32. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008). [CrossRef] [PubMed]
  33. R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010). [CrossRef]
  34. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16(9), 6537–6543 (2008). [CrossRef] [PubMed]
  35. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007). [CrossRef]
  36. N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012). [CrossRef]
  37. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009). [CrossRef]
  38. L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, 1984).
  39. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  40. B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited