OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 17 — Aug. 26, 2013
  • pp: 20376–20386

Error vector magnitude based parameter estimation for digital filter back-propagation mitigating SOA distortions in 16-QAM

Siamak Amiralizadeh, An T. Nguyen, and Leslie A. Rusch  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 20376-20386 (2013)
http://dx.doi.org/10.1364/OE.21.020376


View Full Text Article

Enhanced HTML    Acrobat PDF (4829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 18, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: August 15, 2013
Published: August 22, 2013

Citation
Siamak Amiralizadeh, An T. Nguyen, and Leslie A. Rusch, "Error vector magnitude based parameter estimation for digital filter back-propagation mitigating SOA distortions in 16-QAM," Opt. Express 21, 20376-20386 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-17-20376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Doerr, “High performance photonic integrated circuits for coherent fiber communication,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWU5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWU5 [CrossRef]
  2. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “100 nm-bandwidth positive-efficiency wavelength conversion for m-PSK and m-QAM signals in QD-SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh1C.6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh1C.6 [CrossRef]
  3. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012). [CrossRef]
  4. A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “SOA intensity noise suppression: A Multicanonical Monte Carlo simulator of extremely low BER,” J. Lightwave Technol.27(14), 2667–2677 (2009). [CrossRef]
  5. Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004). [CrossRef]
  6. P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004). [CrossRef]
  7. X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004). [CrossRef]
  8. L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000). [CrossRef]
  9. D. Zimmerman and L. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004). [CrossRef]
  10. T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, Y. Kawaguchi, M. Arai, and H. Yasaka, “Lossless 10-Gbit/s InP n-p-i-n Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThC5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThC5 [CrossRef]
  11. A. Nakanishi, N. Sasada, Y. Sakuma, R. Washino, K. Okamoto, H. Hayashi, H. Arimoto, and S. Tanaka, “Uncooled (0 to 85°C) and full C-band operation of a 10.7 Gbit/s InP Mach-Zehnder modulator monolithically integrated with SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1G.3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OW1G.3
  12. N. Kamitani, Y. Yoshida, and K. Kitayama, “Experimental study on impact of SOA nonlinear phase noise in 40Gbps coherent 16QAM transmissions,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper P1.04. http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-P1.04 [CrossRef]
  13. A. Ghazisaeidi and L. A. Rusch, “On the efficiency of digital back-propagation for mitigating SOA-induced nonlinear impairments,” J. Lightwave Technol.29(21), 3331–3339 (2011). [CrossRef]
  14. S. Amiralizadeh, A. T. Nguyen, C.-S. Park, A. Ghazisaeidi, and L. A. Rusch, “Experimental validation of digital filter back-propagation to suppress SOA-induced nonlinearities in 16-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OM2B.2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OM2B.2 [CrossRef]
  15. F. Vacondio, A. Ghazisaeidi, A. Bononi, and L. A. Rusch, “Low-complexity compensation of SOA nonlinearity for single-channel PSK and OOK,” J. Lightwave Technol.28(3), 277–288 (2010). [CrossRef]
  16. X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009). [CrossRef]
  17. X. Li and G. Li, “Joint fiber and SOA compensation using digital backward propagation,” IEEE Photon. J.2(5), 753–758 (2010). [CrossRef]
  18. S. Lange, Y. Yoshida, and K. Kitayama, “ A low-complexity digital pre-compensation of SOA induced phase distortion in coherent QAM transmissions,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh3C.7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh3C.7
  19. B. Filion, A. Ghazisaeidi, L. A. Rusch, and S. Larochelle, “Extraction of semiconductor optical amplifier parameters for wavelength conversion modeling,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, Arlington, 2011), pp. 367–368. [CrossRef]
  20. A. Saleh, “Nonlinear models of travelling-wave optical amplifiers,” Electron. Lett.24(14), 835–837 (1988). [CrossRef]
  21. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012). [CrossRef]
  22. D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000). [CrossRef]
  23. M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).
  24. S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited